Linear Statistical Models
Regression Lecture Notes
- Statistical Tables
- Raw Scores, Deviation Scores & Standard Scores
- About Summation Signs
- Variance, Covariance & Correlation
- Linear Regression: An Intuitive Explanation
- Simple Linear Regression
- Regression Without Predictors
- Regression Assumptions
- Predicted Scores, Residuals and Other Goodies
- Simple Linear Regression Session
- A Derivation
- Prediction Practice: Part 1
- Multiple Linear Regression
- "Four Regressions" in Concert
- Prediction Practice: Part 2
- Data Transformation
- Regression Diagnostics
- Index Plots
- Dichotomous Predictors
- Product Variables and Interactions
- Multiple Regression Session
- Collinearity
- Selection and Prediction
- Problems with Stepwise Regression
- Cross Validation
- Polynomial Regression
- Partial and Semipartial Correlation
- Comparing Regression Models
- b vs β
- Categorical Predictors
- Prediction Practice: Part 3
- Ordinal Predictor Variables
- Interactions with Categorical Predictors
- Centering
- Some Scaling Issues
- Analysis of Covariance
- Aptitude Treatment Interaction
- Logistic Regression
- Robust Regression
- Path Analysis
- Linear Structural Models
- Specification Error
- Regression with Clustered Data
- Multilevel Data Issues
- Regression with Measurement Error
- Nonlinear Regression
- Weighted Least Squares
- Regression Analysis in Publications
- The Regression Zoo
- The Matrix
- Generalized Linear Models
Linear Statistical Models Course
Phil Ender