We quickly become very accustomed to reading and interpreting regression analyses from our computer output. Regression analyses as reported in journals and other publications often look very different. Here are the results of a regression a typical analysis as produced by Stata.
use http://www.philender.com/courses/data/hsbdemo, clear regress write female read socst i.prog Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 5, 194) = 42.68 Model | 9364.97492 5 1872.99498 Prob > F = 0.0000 Residual | 8513.90008 194 43.8860829 R-squared = 0.5238 -------------+------------------------------ Adj R-squared = 0.5115 Total | 17878.875 199 89.843593 Root MSE = 6.6247 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 4.916003 .9478479 5.19 0.000 3.046593 6.785412 read | .3427226 .060063 5.71 0.000 .2242624 .4611829 socst | .2685807 .0584637 4.59 0.000 .1532746 .3838868 | prog | 2 | .9975073 1.233344 0.81 0.420 -1.434978 3.429992 3 | -1.888857 1.389299 -1.36 0.176 -4.628927 .8512127 | _cons | 18.06893 3.068803 5.89 0.000 12.01643 24.12143 ------------------------------------------------------------------------------Publication tables usually have only the regression coefficient and standard errors along with some fit statistics. In Stata, the estimates table command can be used to create publication type tables. Unfortunately, the star option is not allowed with the standard errors. Below are two examples:
estimates store m1 estimates table m1, stats(N r2 r2_a) b(%6.3f) star --------------------------- Variable | m1 -------------+------------- female | 4.916*** read | 0.343*** socst | 0.269*** | prog | 2 | 0.998 3 | -1.889 | _cons | 18.069*** -------------+------------- N | 200 r2 | 0.524 r2_a | 0.512 --------------------------- legend: * p<0.05; ** p<0.01; *** p<0.001 estimates table m1, stats(N r2 r2_a) se b(%6.3f) se(%6.3f) ------------------------ Variable | m1 -------------+---------- female | 4.916 | 0.948 read | 0.343 | 0.060 socst | 0.269 | 0.058 | prog | 2 | 0.998 | 1.233 3 | -1.889 | 1.389 | _cons | 18.069 | 3.069 -------------+---------- N | 200 r2 | 0.524 r2_a | 0.512 ------------------------ legend: b/seAlternatively, you can use the outreg2 command (findit outreg2) to produce an ASCII table of the results. Note: You will usually need to add spaces manually to get the columns to line up correctly.
outreg2, see VARIABLES write Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 female 4.916*** (0.948) read 0.343*** (0.0601) socst 0.269*** (0.0585) 2.prog 0.998 (1.233) 3.prog -1.889 (1.389) Constant 18.07*** (3.069) Observations 200 R-squared 0.524Now, let's run a second regression model with interaction and display the results of both analyses in the same table.
regress write female read i.prog##c.socst Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 7, 192) = 31.84 Model | 9604.82727 7 1372.11818 Prob > F = 0.0000 Residual | 8274.04773 192 43.0939986 R-squared = 0.5372 -------------+------------------------------ Adj R-squared = 0.5203 Total | 17878.875 199 89.843593 Root MSE = 6.5646 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 4.961672 .9408011 5.27 0.000 3.106039 6.817305 read | .3478027 .0599996 5.80 0.000 .2294597 .4661457 | prog | 2 | 16.75438 6.793211 2.47 0.015 3.355472 30.15328 3 | 8.74215 6.838349 1.28 0.203 -4.745785 22.23009 | socst | .475497 .1110706 4.28 0.000 .2564217 .6945723 | prog#c.socst | 2 | -.300757 .1274851 -2.36 0.019 -.5522081 -.0493059 3 | -.210099 .1386112 -1.52 0.131 -.4834953 .0632973 | _cons | 7.321844 5.673858 1.29 0.198 -3.869254 18.51294 ------------------------------------------------------------------------------ estimates store m2 estimates table m1 m2, stats(N r2 r2_a) b(%6.3f) star ---------------------------------------- Variable | m1 m2 -------------+-------------------------- female | 4.916*** 4.962*** read | 0.343*** 0.348*** socst | 0.269*** 0.475*** | prog | 2 | 0.998 16.754* 3 | -1.889 8.742 | prog#c.socst | 2 | -0.301* 3 | -0.210 | _cons | 18.069*** 7.322 -------------+-------------------------- N | 200 200 r2 | 0.524 0.537 r2_a | 0.512 0.520 ---------------------------------------- legend: * p<0.05; ** p<0.01; *** p<0.001 estimates table m1 m2, stats(N r2 r2_a) se b(%6.3f) se(%6.3f) ---------------------------------- Variable | m1 m2 -------------+-------------------- female | 4.916 4.962 | 0.948 0.941 read | 0.343 0.348 | 0.060 0.060 socst | 0.269 0.475 | 0.058 0.111 | prog | 2 | 0.998 16.754 | 1.233 6.793 3 | -1.889 8.742 | 1.389 6.838 | prog#c.socst | 2 | -0.301 | 0.127 3 | -0.210 | 0.139 | _cons | 18.069 7.322 | 3.069 5.674 -------------+-------------------- N | 200 200 r2 | 0.524 0.537 r2_a | 0.512 0.520 ---------------------------------- legend: b/se outreg2, see (1) (2) VARIABLES write write Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 female 4.916*** 4.962*** (0.948) (0.941) read 0.343*** 0.348*** (0.0601) (0.0600) 2.prog 0.998 16.75** (1.233) (6.793) 3.prog -1.889 8.742 (1.389) (6.838) socst 0.269*** 0.475*** (0.0585) (0.111) 2.prog#c.socst -0.301** (0.127) 3.prog#c.socst -0.210 (0.139) Constant 18.07*** 7.322 (3.069) (5.674) Observations 200 200 R-squared 0.524 0.537