It's Greek to me
Β - beta
η - eta
ξ - xi
ζ - zeta
Γ - gamma
Λ - lambda (upper case)
λ - lambda (lower case)
δ - delta
ε - epsilon
Structural Equation Modeling
Structural Equation Model
Notation
Measurement Model
Notation
Example with Full Notation
Example: Just Identified Model
Output: Just Identified Model
This is the same example as used in the path analysis unit with variables: x1-ξ1-ses, x2-ξ2-iq, y1-η1-am and y2-η2-gpa.
Mplus ESTIMATES Mplus VERSION 2.02 INPUT INSTRUCTIONS TITLE: path analysis; DATA: FILE IS ..\data\ped.dat; VARIABLE: NAMES ARE ses iq am gpa; USEVAR = ses iq am gpa; ANALYSIS: TYPE=meanstructure; MODEL: iq on ses; am on ses iq; gpa on am ses iq; OUTPUT: sampstat residual; Correlations IQ AM GPA SES ________ ________ ________ ________ IQ 1.000 AM 0.160 1.000 GPA 0.570 0.500 1.000 SES 0.300 0.410 0.330 1.000 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 0.000 Degrees of Freedom 0 P-Value 0.0000 Chi-Square Test of Model Fit for the Baseline Model Value 289.885 Degrees of Freedom 6 P-Value 0.0000 CFI/TLI CFI 1.000 TLI 1.000 Loglikelihood H0 Value -1555.780 H1 Value -1555.780 Information Criteria Number of Free Parameters 12 Akaike (AIC) 3135.561 Bayesian (BIC) 3180.006 Sample-Size Adjusted BIC 3141.949 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.000 Probability RMSEA <= .05 0.000 SRMR (Standardized Root Mean Square Residual) Value 0.000 MODEL RESULTS Estimates S.E. Est./S.E. IQ ON SES 0.300 0.055 5.447 AM ON SES 0.398 0.055 7.213 IQ 0.041 0.055 0.737 GPA ON AM 0.416 0.045 9.256 SES 0.009 0.047 0.198 IQ 0.501 0.043 11.647 Residual Variances IQ 0.907 0.074 12.247 AM 0.828 0.068 12.247 GPA 0.502 0.041 12.247 Intercepts IQ 0.000 0.055 0.000 AM 0.000 0.053 0.000 GPA 0.000 0.041 0.000 RESIDUAL OUTPUT ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) Model Estimated Covariances/Correlations/Residual Correlations IQ AM GPA SES ________ ________ ________ ________ IQ 0.997 AM 0.159 0.997 GPA 0.568 0.498 0.997 SES 0.299 0.409 0.329 0.997Example: Overidentified ModelLISREL ESTIMATES BETA ETA1 ETA2 EQ 1 1.000 0.000 EQ 2 -0.416 1.000 GAMMA KSI1 KSI2 EQ 1 0.398 0.041 EQ 2 0.009 0.501 PHI KSI1 KSI2 KSI1 1.000 KSI2 0.300 1.000 PSI EQ1 EQ2 1 0.830 0.504 TEST OF GOODNESS OF FIT CHI SQUARE WITH 0 DF = 0.00 PROBABILITY LEVEL = 1.000
Output: Overidentified Model
Mplus ESTIMATES TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 0.582 Degrees of Freedom 2 P-Value 0.7469 Chi-Square Test of Model Fit for the Baseline Model Value 289.885 Degrees of Freedom 6 P-Value 0.0000 CFI/TLI CFI 1.000 TLI 1.015 Loglikelihood H0 Value -1556.071 H1 Value -1555.780 Information Criteria Number of Free Parameters 10 Akaike (AIC) 3132.143 Bayesian (BIC) 3169.181 Sample-Size Adjusted BIC 3137.467 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.079 Probability RMSEA <= .05 0.868 SRMR (Standardized Root Mean Square Residual) Value 0.013 MODEL RESULTS Estimates S.E. Est./S.E. IQ ON SES 0.300 0.055 5.447 AM ON SES 0.410 0.053 7.786 GPA ON AM 0.420 0.041 10.162 IQ 0.503 0.041 12.180 Residual Variances IQ 0.907 0.074 12.247 AM 0.829 0.068 12.247 GPA 0.502 0.041 12.247 Intercepts IQ 0.000 0.055 0.000 AM 0.000 0.053 0.000 GPA 0.000 0.041 0.000 RESIDUAL OUTPUT ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) Model Estimated Covariances/Correlations/Residual Correlations IQ AM GPA SES ________ ________ ________ ________ IQ 0.997 AM 0.123 0.997 GPA 0.553 0.480 0.981 SES 0.299 0.409 0.322 0.997LISREL ESTIMATES BETA ETA1 ETA2 EQ 1 1.000 0.000 EQ 2 -0.420 1.000 GAMMA KSI1 KSI2 EQ 1 0.410 0.000 EQ 2 0.000 0.503 PHI KSI1 KSI2 KSI1 1.000 KSI2 0.300 1.000 PSI EQ1 EQ2 1 0.832 0.504 TEST OF GOODNESS OF FIT CHI SQUARE WITH 2 DF = 0.1921 PROBABILITY LEVEL = 0.9084