First Thoughts
Multicollinearity
Common Indicators of Collinearity
Effects of Collinearity
Checking for Collinearity in Stata
Stata Example Using collin
use http://www.philender.com/courses/data/hsbdemo, clear collin female schtyp read write math science socst Collinearity Diagnostics SQRT R- Variable VIF VIF Tolerance Squared ---------------------------------------------------- female 1.25 1.12 0.8027 0.1973 schtyp 1.02 1.01 0.9819 0.0181 read 2.45 1.57 0.4080 0.5920 write 2.52 1.59 0.3962 0.6038 math 2.28 1.51 0.4378 0.5622 science 2.12 1.46 0.4717 0.5283 socst 1.91 1.38 0.5224 0.4776 ---------------------------------------------------- Mean VIF 1.94 Cond Eigenval Index --------------------------------- 1 3.4004 1.0000 2 1.1347 1.7311 3 0.9782 1.8644 4 0.5229 2.5502 5 0.3577 3.0831 6 0.3299 3.2104 7 0.2762 3.5087 --------------------------------- Condition Number 3.5087 Eigenvalues & Cond Index computed from deviation sscp (no intercept) Det(correlation matrix) 0.0643 use http://www.philender.com/courses/data/lahigh, clear collin mathnce langnce mathpr langpr Collinearity Diagnostics SQRT R- Variable VIF VIF Tolerance Squared ---------------------------------------------------- mathnce 24.20 4.92 0.0413 0.9587 langnce 28.31 5.32 0.0353 0.9647 mathpr 25.02 5.00 0.0400 0.9600 langpr 29.09 5.39 0.0344 0.9656 ---------------------------------------------------- Mean VIF 26.65 Cond Eigenval Index --------------------------------- 1 3.3643 1.0000 2 0.5926 2.3827 3 0.0287 10.8179 4 0.0143 15.3294 --------------------------------- Condition Number 15.3294 Eigenvalues & Cond Index computed from deviation sscp (no intercept) Det(correlation matrix) 0.0008 collin mathnce langnce Collinearity Diagnostics SQRT R- Variable VIF VIF Tolerance Squared ---------------------------------------------------- mathnce 1.90 1.38 0.5256 0.4744 langnce 1.90 1.38 0.5256 0.4744 ---------------------------------------------------- Mean VIF 1.90 Cond Eigenval Index --------------------------------- 1 1.6888 1.0000 2 0.3112 2.3295 --------------------------------- Condition Number 2.3295 Eigenvalues & Cond Index computed from deviation sscp (no intercept) Det(correlation matrix) 0.5256
Computational Examples
The following computational examples show some of the effects of high collinearity on standardized regression coefficients.
Example A
1 2 3 Y 1 - .20 .20 .50 2 - .10 .50 3 - .50 Y - R2 = .56373 Det = .918 Beta Std Err F 1 .34314 .07001 24.025 2 .39216 .06894 32.360 3 .39216 .06894 32.360
Example B
1 2 3 Y 1 - .20 .20 .50 2 - .85 .50 3 - .50 Y - R2 = .43079 Det = .2655 Beta Std Err F 1 .40960 .07872 27.073 2 .22599 .14642 2.382 3 .22599 .14642 2.382
Example C
1 2 3 Y 1 - .20 .20 .50 2 - .10 .50 3 - .52 Y - R2 = .57983 Beta Std Err F 1 .33922 .06870 24.378 2 .39085 .06765 33.376 3 .41307 .06765 37.279
Example D
1 2 3 Y 1 - .20 .20 .50 2 - .85 .50 3 - .52 Y - R2 = .44128 Beta Std Err F 1 .40734 .07799 27.277 2 .16497 .14507 1.293 3 .29831 .14507 4.229
Remedies