In simple linear regression there is only one predictor variable and takes the form y = b0 + b1x + e. Where y is the response variable, x the predictor variable and e the error or residual. Other terms for the predictor variable include independent variable, explanitory variable or right-hand variable. The response variable is also know as the dependent variable, criterion variable, outcome variable or left-hand variable.
Simple Linear Regression Output
use http://www.philender.com/courses/data/hsbdemo, clear regress write read Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 1, 198) = 109.52 Model | 6367.42127 1 6367.42127 Prob > F = 0.0000 Residual | 11511.4537 198 58.1386552 R-squared = 0.3561 -------------+------------------------------ Adj R-squared = 0.3529 Total | 17878.875 199 89.843593 Root MSE = 7.6249 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- read | .5517051 .0527178 10.47 0.000 .4477446 .6556656 _cons | 23.95944 2.805744 8.54 0.000 18.42647 29.49242 ------------------------------------------------------------------------------Interpretation
_cons = 23.95944 -- The predicted value for observation when read scores equal zero.
_b[read] = .5517051 -- For every one unit increase in read, the predicted value for write increases by .5517051.
regress, beta Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 1, 198) = 109.52 Model | 6367.42127 1 6367.42127 Prob > F = 0.0000 Residual | 11511.4537 198 58.1386552 R-squared = 0.3561 -------------+------------------------------ Adj R-squared = 0.3529 Total | 17878.875 199 89.843593 Root MSE = 7.6249 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| Beta -------------+---------------------------------------------------------------- read | .5517051 .0527178 10.47 0.000 .5967765 _cons | 23.95944 2.805744 8.54 0.000 . ------------------------------------------------------------------------------
Variance
where:
Yi is the value of the dependent, response or outcome variable for the ith case
β0 and β1 are parameters
Xi is the value of the predictor, independent or explanitory variable for the ith case
εi is a random eror term with:
Squared Correlation Coefficient
aka -- Coefficient of Determintion
Coefficient of Alienation
Residual
Alternative formula