Linear Statistical Models: Regression

Simple Linear Regression


In simple linear regression there is only one predictor variable and takes the form y = b0 + b1x + e. Where y is the response variable, x the predictor variable and e the error or residual. Other terms for the predictor variable include independent variable, explanitory variable or right-hand variable. The response variable is also know as the dependent variable, criterion variable, outcome variable or left-hand variable.

Simple Linear Regression Output

use http://www.philender.com/courses/data/hsbdemo, clear

regress write read

      Source |       SS       df       MS              Number of obs =     200
-------------+------------------------------           F(  1,   198) =  109.52
       Model |  6367.42127     1  6367.42127           Prob > F      =  0.0000
    Residual |  11511.4537   198  58.1386552           R-squared     =  0.3561
-------------+------------------------------           Adj R-squared =  0.3529
       Total |   17878.875   199   89.843593           Root MSE      =  7.6249

------------------------------------------------------------------------------
       write |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        read |   .5517051   .0527178    10.47   0.000     .4477446    .6556656
       _cons |   23.95944   2.805744     8.54   0.000     18.42647    29.49242
------------------------------------------------------------------------------
Interpretation

_cons = 23.95944 -- The predicted value for observation when read scores equal zero.

_b[read] = .5517051 -- For every one unit increase in read, the predicted value for write increases by .5517051.

regress, beta

      Source |       SS       df       MS              Number of obs =     200
-------------+------------------------------           F(  1,   198) =  109.52
       Model |  6367.42127     1  6367.42127           Prob > F      =  0.0000
    Residual |  11511.4537   198  58.1386552           R-squared     =  0.3561
-------------+------------------------------           Adj R-squared =  0.3529
       Total |   17878.875   199   89.843593           Root MSE      =  7.6249

------------------------------------------------------------------------------
       write |      Coef.   Std. Err.      t    P>|t|                     Beta
-------------+----------------------------------------------------------------
        read |   .5517051   .0527178    10.47   0.000                 .5967765
       _cons |   23.95944   2.805744     8.54   0.000                        .
------------------------------------------------------------------------------

Variance

Covariance Standard Deviation Sum of Squared Deviations (SS) Sum of Cross Products (SSCP) Conditional Expectation Population Regression Model Regression Equations Scatterplot with Regression Line Partitioning the Sums of Squares Residuals Illustrated Correlation Coefficient Degree of association between variables.

Squared Correlation Coefficient
aka -- Coefficient of Determintion

Proportion of variance accounted for by the predictor.

Coefficient of Alienation

Proportion of variance not accounted for by the predictor.

Residual

Sum of Squares Residuals Variance of Estimate Standard Error of Estimate Regression Coefficients Standard Error of Regression Coefficient Test of Regression Coefficient Test of Regression Model Standardized Regression Coefficients
where β = standardized regression coefficient Standardized regression coefficients are what you would get if all the variables in the regression were first converted to standard scores (z-scores).

Sums of Squares Regression

Sums of Squares Residual More Partitioning
This time partitioning variances Residuals Illustrated Testing the Regression
In general: In Simple Regression Confidence Interval for Regression Coefficient Factors Affecting Precision

  • Sample Size, n
  • The amount of scatter about the regression line, i.e., the standard error of estimate
  • The range of values in the independent variable, X


    Linear Statistical Models Course

    Phil Ender, 5Jan98