Linear Statistical Models: Regression

Aptitude Treatment Interaction

Updated for Stata 11


ATI Analysis

Sample Size

Notation

ATI Flow Chart

Step 1: Test Proportion of Variance

n.s. -> Stop
sig. -> Go to Step 2

Step 2: Test Interaction

sig. -> Go to Step 7
n.s. -> Go to Step 3

Step 3: Test Common Regression Coefficient

sig. -> Go to Step 5
n.s. -> Go to Step 4

Step 4: Test for Treatment

sig. -> Significant Treatment Effect

n.s. -> No Significant Effects, Stop

Step 5: Test Intercepts

sig. -> Separate Intercepts

n.s. -> Go to Step 6

Step 6: Compute Single Regression Using the Continuous Variable

Stop

Step 7: Compute Separate Regression Equations. Establish Regions of Significance

Stop

Numerical Example

Step 1: Test Proportion of Variance

sig. -> Go to Step 2

Step 2: Test Interaction

n.s. -> Go to Step 3

Step 3: Test Common Slope

sig. -> Go to Step 5

Step 5: Test Intercepts

sig. -> Calculate Separate Intercepts

Y' = 4.92 - 2.04X1 + .24X2

4.92 + (-2.04) = 2.88
4.92 - (-2.04) = 6.97

Y' = 2.88 + .24X2
Y' = 6.96 + .24X2

Stop

Categorizing Continuous Variables

Determining the Point of Intersection

Johnson-Neyman Regions

  • Scores that are closer to the point of intersection differ less.
  • While points that are further from the point of intersection are likely to differ more.

    Stata Example

    Step 1: Test overall model.

    use http://www.philender.com/courses/data/ati2, clear
    
    describe
    
    regress score i.treat##c.ability
    
          Source |       SS       df       MS              Number of obs =     200
    -------------+------------------------------           F(  5,   194) =   26.43
           Model |  7244.37532     5  1448.87506           Prob > F      =  0.0000
        Residual |  10634.4997   194  54.8170087           R-squared     =  0.4052
    -------------+------------------------------           Adj R-squared =  0.3899
           Total |   17878.875   199   89.843593           Root MSE      =  7.4039
    
    ------------------------------------------------------------------------------
           score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           treat |
              2  |  -4.066235   8.960134    -0.45   0.650    -21.73802    13.60555
              3  |  -9.605377   9.833632    -0.98   0.330    -28.99993    9.789176
                 |
         ability |   .4528834   .1499795     3.02   0.003     .1570837     .748683
                 |
           treat#|
       c.ability |
              2  |   .1048889   .1714919     0.61   0.542    -.2333391    .4431168
              3  |   .1435465   .2004388     0.72   0.475    -.2517725    .5388655
                 |
           _cons |    28.6791   7.583058     3.78   0.000     13.72328    43.63492
    ------------------------------------------------------------------------------
    
    twoway (scatter score ability, jitter(2))(lfit score ability if treat==1) ///
       (lfit score ability if treat==2)(lfit score ability if treat==3), legend(off) 
    
    
    

    The F-ratio, F(5, 194) = 26.43, for the full model with treatment, ability, and interaction is significant, go to Step 2.

    Step 2: Test interaction.

    testparm treat#c.ability
    
     ( 1)  2.treat#c.ability = 0
     ( 2)  3.treat#c.ability = 0
    
           F(  2,   194) =    0.27
                Prob > F =    0.7604

    The interaction is not significant, go to Step 3.

    Step 3: Test common regressio, coefficient.

    regress score i.treat ability
    
          Source |       SS       df       MS              Number of obs =     200
    -------------+------------------------------           F(  3,   196) =   44.20
           Model |  7214.30058     3  2404.76686           Prob > F      =  0.0000
        Residual |  10664.5744   196   54.411094           R-squared     =  0.4035
    -------------+------------------------------           Adj R-squared =  0.3944
           Total |   17878.875   199   89.843593           Root MSE      =  7.3764
    
    ------------------------------------------------------------------------------
           score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           treat |
              2  |   1.248212   1.381794     0.90   0.367     -1.47688    3.973304
              3  |  -2.600438   1.532905    -1.70   0.091    -5.623543    .4226668
                 |
         ability |   .5476883   .0635714     8.62   0.000     .4223166    .6730601
           _cons |   23.93675   3.364732     7.11   0.000     17.30102    30.57247
    ------------------------------------------------------------------------------
    
    predict p2
    
    sort treat p2
    
    graph twoway scatter score p2 ability, s(oh i) c(. L) jitter(2) legend(off)
    
    
    
    test ability
    
     ( 1)  ability = 0.0
    
           F(  1,   196) =   74.22
                Prob > F =    0.0000

    The regression coefficient for ability is significant, go to Step 5.

    Step 5: Test intercepts.

    testparm i.treat
    
     ( 1)  2.treat = 0
     ( 2)  3.treat = 0
    
           F(  2,   196) =    3.66
                Prob > F =    0.0276

    The treatment is significant, calculate seperate intercepts with common regression coefficient.

    
    y' = 23.94 + 1.25(2.treat) - 2.6(3.treat) + .55(ability)
    y' = 23.94 + 1.25(0)         - 2.6(0)     + .55(ability)
    y' = 23.94 + .55(ability) {treatment group 1}
    
    y' = 23.94 + 1.25(2.treat) - 2.6(3.treat) + .55(ability)
    y' = 23.94 + 1.25(1)         - 2.6(0)     + .55(ability)
    y' = 25.19 + .55(ability) {treatment group 2}
    
    y' = 23.94 + 1.25(2.treat) - 2.6(3.treat) + .55(ability)
    y' = 23.94 + 1.25(0)         - 2.6(1)     + .55(ability)
    y' = 21.34 + .55(ability) {treatment group 3}


    Linear Statistical Models Course

    Phil Ender, 29Jan98