What is Appropriate Unit of Analysis?
Comments & Opinions
Cross-level inferences
A Question?
Some Examples
Three Partitions
Within Groups
Between Groups
Total
Partitioning Sums of Squares
Correlations
Regression Coefficients
Eta Squared
Eta squared is equal to R2 when doing regression using coded vectors for group membership.
Correlations Again
Using eta squared the formulas for the correlations can be rewritten as:
Regression Coefficients Again
An Example
Source | Σy2 | Σx2 | Σxy | r | b |
---|---|---|---|---|---|
Total | 82.5 | 42.5 | 37.5 | .633 | .88235 |
G1 | 10.0 | 10.0 | 0 | 0 | 0 |
G2 | 10.0 | 10.0 | 0 | 0 | 0 |
Within | 20.0 | 20.0 | 0 | 0 | 0 |
Between | 62.5 | 22.5 | 37.5 | 1.00 | 1.667 |
eta2y = .75758
eta2x = .52941
Multilevel Analysis
Stata Example
The sch10 dataset contains data on students in 10 schools.
use http://www.philender.com/courses/data/sch10, clear rename scid school table school, cont(freq mean math mean hmwk) format(%6.2f) ---------------------------------------------- group(sch | id) | Freq. mean(math) mean(hmwk) ----------+----------------------------------- 1 | 23 45.74 1.39 2 | 20 42.15 2.35 3 | 24 53.25 1.83 4 | 22 43.55 1.64 5 | 22 49.86 0.86 6 | 20 46.40 1.15 7 | 67 62.82 3.30 8 | 21 49.67 2.10 9 | 21 46.33 1.33 10 | 20 47.85 1.60 ---------------------------------------------- regress math Source | SS df MS Number of obs = 260 -------------+------------------------------ F( 0, 259) = 0.00 Model | 0.00 0 . Prob > F = . Residual | 32116.60 259 124.002317 R-squared = 0.0000 -------------+------------------------------ Adj R-squared = 0.0000 Total | 32116.60 259 124.002317 Root MSE = 11.136 ------------------------------------------------------------------------------ math | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 51.3 .6906026 74.28 0.000 49.94009 52.65991 ------------------------------------------------------------------------------ regress math hmwk Source | SS df MS Number of obs = 260 -------------+------------------------------ F( 1, 258) = 84.64 Model | 7933.80702 1 7933.80702 Prob > F = 0.0000 Residual | 24182.793 258 93.7317557 R-squared = 0.2470 -------------+------------------------------ Adj R-squared = 0.2441 Total | 32116.60 259 124.002317 Root MSE = 9.6815 ------------------------------------------------------------------------------ math | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- hmwk | 3.571856 .3882366 9.20 0.000 2.80734 4.336372 _cons | 44.07386 .988641 44.58 0.000 42.12703 46.02069 ------------------------------------------------------------------------------ sort school by school: generate i = _n egen mmath = mean(math), by(school) egen mhmwk = mean(hmwk), by(school) regress mmath if i==1 [aw=n] (sum of wgt is 2.6000e+02) Source | SS df MS Number of obs = 10 -------------+------------------------------ F( 0, 9) = 0.00 Model | 0.00 0 . Prob > F = . Residual | 539.635975 9 59.9595528 R-squared = 0.0000 -------------+------------------------------ Adj R-squared = 0.0000 Total | 539.635975 9 59.9595528 Root MSE = 7.7434 ------------------------------------------------------------------------------ mmath | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 51.3 2.448664 20.95 0.000 45.76074 56.83926 ------------------------------------------------------------------------------ regress mmath mhmwk if i==1 [aw=n] (sum of wgt is 2.6000e+02) Source | SS df MS Number of obs = 10 -------------+------------------------------ F( 1, 8) = 14.33 Model | 346.267285 1 346.267285 Prob > F = 0.0054 Residual | 193.36869 8 24.1710863 R-squared = 0.6417 -------------+------------------------------ Adj R-squared = 0.5969 Total | 539.635975 9 59.9595528 Root MSE = 4.9164 ------------------------------------------------------------------------------ mmath | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mhmwk | 7.014745 1.853336 3.78 0.005 2.740944 11.28855 _cons | 37.10863 4.058993 9.14 0.000 27.74858 46.46869 ------------------------------------------------------------------------------ regress math hmwk mhmwk Source | SS df MS Number of obs = 260 -------------+------------------------------ F( 2, 257) = 67.00 Model | 11006.6159 2 5503.30794 Prob > F = 0.0000 Residual | 21109.9841 257 82.1400161 R-squared = 0.3427 -------------+------------------------------ Adj R-squared = 0.3376 Total | 32116.60 259 124.002317 Root MSE = 9.0631 ------------------------------------------------------------------------------ math | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- hmwk | 2.136635 .4326083 4.94 0.000 1.284726 2.988543 mhmwk | 4.87811 .797556 6.12 0.000 3.307533 6.448687 _cons | 37.10863 1.467442 25.29 0.000 34.21889 39.99837 ------------------------------------------------------------------------------ statsby "regress math hmwk" _b[_cons] _b[hmwk] , by(school) clear command: regress math hmwk by: school statistics: _stat1 = _b[_cons] _stat2 = _b[hmwk] list school _stat1 _stat2 1. 1 50.68354 -3.553797 2. 2 49.01229 -2.920123 3. 3 38.75 7.909091 4. 4 34.39382 5.592664 5. 5 53.93863 -4.718411 6. 6 49.25896 -2.486056 7. 7 59.21022 1.09464 8. 8 36.05535 6.49631 9. 9 38.52 5.86 10. 10 37.71392 6.335052 use http://www.philender.com/courses/data/sch10, clear xtmixed math hmwk || school: hnwk, var cov(unstr) Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -881.97717 Iteration 1: log restricted-likelihood = -881.97717 Computing standard errors: Mixed-effects REML regression Number of obs = 260 Group variable: school Number of groups = 10 Obs per group: min = 20 avg = 26.0 max = 67 Wald chi2(1) = 1.72 Log restricted-likelihood = -881.97717 Prob > chi2 = 0.1892 ------------------------------------------------------------------------------ math | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hmwk | 2.040464 1.554221 1.31 0.189 -1.005754 5.086682 _cons | 44.77059 2.743654 16.32 0.000 39.39313 50.14806 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ school: Unstructured | var(hmwk) | 22.45281 11.50929 8.221395 61.3191 var(_cons) | 69.30461 35.0263 25.7376 186.6192 cov(hmwk,_cons) | -31.76199 18.17669 -67.38764 3.863666 -----------------------------+------------------------------------------------ var(Residual) | 43.07098 3.929865 36.01802 51.50505 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(3) = 151.64 Prob > chi2 = 0.0000 /* rerun to get hmwk, _cons correlation */ xtmixed Mixed-effects REML regression Number of obs = 260 Group variable: school Number of groups = 10 Obs per group: min = 20 avg = 26.0 max = 67 Wald chi2(1) = 1.72 Log restricted-likelihood = -881.97717 Prob > chi2 = 0.1892 ------------------------------------------------------------------------------ math | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hmwk | 2.040464 1.554221 1.31 0.189 -1.005754 5.086682 _cons | 44.77059 2.743654 16.32 0.000 39.39313 50.14806 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ school: Unstructured | sd(hmwk) | 4.738439 1.21446 2.867297 7.830652 sd(_cons) | 8.324939 2.103697 5.073224 13.66086 corr(hmwk,_cons) | -.8051768 .1242568 -.9473872 -.3975028 -----------------------------+------------------------------------------------ sd(Residual) | 6.562849 .2994024 6.001501 7.176702 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(3) = 151.64 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.
Linear Statistical Models Course
Phil Ender, 17sep10, 29Jan98