Specification Errors
Recall that specification errors include:
Omitting Relevant Variables
Including Irrelevant Variables
Some Stata Commands
use http://www.philender.com/courses/data/hsbdemo, clear regress read write female i.ses Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 4, 195) = 35.32 Model | 8789.20628 4 2197.30157 Prob > F = 0.0000 Residual | 12130.2137 195 62.2062242 R-squared = 0.4201 -------------+------------------------------ Adj R-squared = 0.4083 Total | 20919.42 199 105.122714 Root MSE = 7.8871 ------------------------------------------------------------------------------ read | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- write | .666923 .0631027 10.57 0.000 .5424716 .7913743 female | -3.997829 1.182598 -3.38 0.001 -6.330155 -1.665504 | ses | 2 | 1.727183 1.427627 1.21 0.228 -1.088388 4.542754 3 | 3.967854 1.610743 2.46 0.015 .7911399 7.144568 | _cons | 17.24087 3.271046 5.27 0.000 10.7897 23.69204 ------------------------------------------------------------------------------ testparm i.ses ( 1) 2.ses = 0 ( 2) 3.ses = 0 F( 2, 195) = 3.11 Prob > F = 0.0467 linktest Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 2, 197) = 72.36 Model | 8859.13636 2 4429.56818 Prob > F = 0.0000 Residual | 12060.2836 197 61.2197139 R-squared = 0.4235 -------------+------------------------------ Adj R-squared = 0.4176 Total | 20919.42 199 105.122714 Root MSE = 7.8243 ------------------------------------------------------------------------------ read | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _hat | -.2489419 1.171552 -0.21 0.832 -2.559335 2.061451 _hatsq | .0121192 .0113394 1.07 0.286 -.0102429 .0344814 _cons | 31.63874 29.92719 1.06 0.292 -27.38005 90.65752 ------------------------------------------------------------------------------ ovtest Ramsey RESET test using powers of the fitted values of read Ho: model has no omitted variables F(3, 192) = 1.44 Prob > F = 0.2337 use http://www.philender.com/courses/data/gpa, clear regress gpa mat ar Source | SS df MS Number of obs = 30 ---------+------------------------------ F( 2, 27) = 13.09 Model | 5.13721671 2 2.56860836 Prob > F = 0.0001 Residual | 5.29744993 27 .196201849 R-squared = 0.4923 ---------+------------------------------ Adj R-squared = 0.4547 Total | 10.4346666 29 .359816091 Root MSE = .44295 ------------------------------------------------------------------------------ gpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- mat | .0249295 .0104491 2.386 0.024 .0034898 .0463692 ar | .2997867 .115247 2.601 0.015 .0633194 .5362541 _cons | .5738174 .6029815 0.952 0.350 -.6633984 1.811033 ------------------------------------------------------------------------------ linktest Source | SS df MS Number of obs = 30 ---------+------------------------------ F( 2, 27) = 21.11 Model | 6.36484445 2 3.18242222 Prob > F = 0.0000 Residual | 4.0698222 27 .150734155 R-squared = 0.6100 ---------+------------------------------ Adj R-squared = 0.5811 Total | 10.4346666 29 .359816091 Root MSE = .38824 ------------------------------------------------------------------------------ gpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- _hat | 9.044484 2.824042 3.203 0.003 3.250028 14.83894 _hatsq | -1.181952 .4141642 -2.854 0.008 -2.031747 -.3321575 _cons | -13.47598 4.756589 -2.833 0.009 -23.23569 -3.716264 ------------------------------------------------------------------------------ ovtest Ramsey RESET test using powers of the fitted values of gpa Ho: model has no omitted variables F(3, 24) = 9.83 Prob > F = 0.0002 regress gpa mat ar greq grev Source | SS df MS Number of obs = 30 -------------+------------------------------ F( 4, 25) = 11.13 Model | 6.68313355 4 1.67078339 Prob > F = 0.0000 Residual | 3.7515331 25 .150061324 R-squared = 0.6405 -------------+------------------------------ Adj R-squared = 0.5829 Total | 10.4346666 29 .359816091 Root MSE = .38738 ------------------------------------------------------------------------------ gpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mat | .0208961 .0095488 2.19 0.038 .0012299 .0405623 ar | .1442335 .1130013 1.28 0.214 -.0884969 .376964 greq | .0039983 .0018307 2.18 0.039 .000228 .0077686 grev | .0015236 .0010502 1.45 0.159 -.0006392 .0036865 _cons | -1.738107 .9507399 -1.83 0.079 -3.696192 .2199789 ------------------------------------------------------------------------------ linktest Source | SS df MS Number of obs = 30 -------------+------------------------------ F( 2, 27) = 26.99 Model | 6.9555881 2 3.47779405 Prob > F = 0.0000 Residual | 3.47907855 27 .128854761 R-squared = 0.6666 -------------+------------------------------ Adj R-squared = 0.6419 Total | 10.4346666 29 .359816091 Root MSE = .35896 ------------------------------------------------------------------------------ gpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _hat | 4.488587 2.40314 1.87 0.073 -.4422485 9.419423 _hatsq | -.5179375 .3561891 -1.45 0.157 -1.248777 .2129022 _cons | -5.757461 3.986623 -1.44 0.160 -13.93734 2.422414 ------------------------------------------------------------------------------ ovtest Ramsey RESET test using powers of the fitted values of gpa Ho: model has no omitted variables F(3, 22) = 1.71 Prob > F = 0.1932
Linear Statistical Models Course
Phil Ender, 17sep10, 13dec00