Predicted scores are the values predicted from the linear regression model. Predicted scores are often denoted by Y' or Yhat. Residuals scores or just plain residuals for short, are the differences between the observed score and the predicted score. Residuals can be standardized in several different ways, including what are known as Studentized residuals.
Leverage has to do with how extreme scores are on the predictor variable and will be denoted as lev. When an observation has both a large residual and high leverage the observation is said to be influential. Cook's D is one measure of influence of an observation.
Here is how you can obtain predicted scores, residuals, leverage and Cook's D using Stata.
use http://www.philender.com/courses/data/hsbdemo, clear regress science math Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 1, 198) = 130.81 Model | 7760.55791 1 7760.55791 Prob > F = 0.0000 Residual | 11746.9421 198 59.3279904 R-squared = 0.3978 -------------+------------------------------ Adj R-squared = 0.3948 Total | 19507.50 199 98.0276382 Root MSE = 7.7025 ------------------------------------------------------------------------------ science | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- math | .66658 .0582822 11.44 0.000 .5516466 .7815135 _cons | 16.75789 3.116229 5.38 0.000 10.61264 22.90315 ------------------------------------------------------------------------------ generate pre1 = 16.75789 + .66658*math predict pre2 list pre1 pre2 in 1/20 pre1 pre2 1. 44.08767 44.08768 2. 52.08663 52.08664 3. 52.75321 52.75322 4. 48.08715 48.08715 5. 54.75295 54.75296 6. 50.75347 50.75348 7. 44.75425 44.75426 8. 46.75399 46.75399 9. 52.75321 52.75322 10. 51.42005 51.42006 11. 50.75347 50.75348 12. 50.75347 50.75348 13. 64.08507 64.08508 14. 54.75295 54.75296 15. 50.08689 50.08689 16. 45.42083 45.42084 17. 50.75347 50.75348 18. 56.75269 56.7527 19. 58.08585 58.08586 20. 54.75295 54.75296 corr pre1 pre2 (obs=200) | pre1 pre2 -------------+------------------ pre1 | 1.0000 pre2 | 1.0000 1.0000 generate res1 = science - pre1 predict res2, resid list res1 res2 in 1/20 res1 res2 1. 2.912331 2.912324 2. 10.91337 10.91336 3. 5.246792 5.246784 4. 4.912849 4.912844 5. -1.752949 -1.752956 6. 12.24653 12.24652 7. 8.24575 8.245745 8. -7.75399 -7.753996 9. 5.246792 5.246784 10. -1.420052 -1.420056 11. 2.246529 2.246524 12. 12.24653 12.24652 13. -3.085068 -3.085076 14. .2470512 .247044 15. -19.08689 -19.08689 16. 4.57917 4.579165 17. -.7534714 -.7534758 18. 1.247311 1.247304 19. -3.08585 -3.085856 20. -1.752949 -1.752956 predict rsta, rsta predict rstu, rstu list res1 res2 rsta rstu in 1/20 res1 res2 rsta rstu 1. 2.912331 2.912324 .3805392 .3797159 2. 10.91337 10.91336 1.420427 1.42411 3. 5.246792 5.246784 .6829278 .6820047 4. 4.912849 4.912844 .640015 .6390582 5. -1.752949 -1.752956 -.2282794 -.2277322 6. 12.24653 12.24652 1.594062 1.600334 7. 8.24575 8.245745 1.076735 1.077171 8. -7.75399 -7.753996 -1.010918 -1.010974 9. 5.246792 5.246784 .6829278 .6820047 10. -1.420052 -1.420056 -.1848286 -.1843772 11. 2.246529 2.246524 .2924176 .2917413 12. 12.24653 12.24652 1.594062 1.600334 13. -3.085068 -3.085076 -.4054857 -.4046285 14. .2470512 .247044 .0321714 .0320901 15. -19.08689 -19.08689 -2.484742 -2.518029 16. 4.57917 4.579165 .5975997 .596627 17. -.7534714 -.7534758 -.0980758 -.0978302 18. 1.247311 1.247304 .1625953 .162195 19. -3.08585 -3.085856 -.4026527 -.4017991 20. -1.752949 -1.752956 -.2282794 -.2277322 corr res1 res2 rsta rstu (obs=200) | res1 res2 rsta rstu -------------+------------------------------------ res1 | 1.0000 res2 | 1.0000 1.0000 rsta | 1.0000 1.0000 1.0000 rstu | 1.0000 1.0000 1.0000 1.0000 predict lev, leverage predict d, cooksd sort d list rsta lev d in -20/l rsta lev d 181. -1.404299 .0114879 .011459 182. -1.662786 .0083463 .0116353 183. -1.576623 .009279 .0116406 184. 1.42586 .0127641 .013143 185. -2.137993 .0057607 .0132424 186. 2.158743 .0057607 .0135007 187. -1.53488 .0114879 .0136892 188. 2.246003 .0060859 .0154442 189. -2.484742 .0054006 .0167619 190. -1.796041 .0114879 .0187439 191. -1.495091 .0167983 .0190953 192. 2.420326 .0066418 .0195839 193. 1.733267 .01566 .0238973 194. -1.799162 .0152117 .0250004 195. -1.971433 .0127641 .0251248 196. -1.414706 .0264486 .027186 197. -2.620104 .009279 .0321482 198. 2.298569 .0141548 .0379298 199. -2.453299 .0152117 .0464843 200. 3.403156 .022826 .1352672