Advanced Statistics
Class Notes


  1. Introduction
  2. Statistical Tables
  3. The hsb2 Dataset
  4. About Summation Signs
  5. Simple Linear Regression
  6. Simple Linear Regression Example
  7. Regression Without Predictors
  8. Regression Assumptions
  9. Predicted Scores, Residuals and Other Goodies
  10. A Derivation
  11. Prediction Practice: Part 1
  12. Multiple Linear Regression
  13. "Three Regressions" in Concert
  14. Prediction Practice: Part 2
  15. Data Transformation
  16. Regression Diagnostics
  17. Index Plots
  18. Dichotomous Predictors
  19. Product Variables and Interactions
  20. Multiple Regression Session
  21. Collinearity
  22. Selection and Prediction
  23. Problems with Stepwise Regression
  24. Cross Validation
  25. Polynomial Regression
  26. Partial and Semipartial Correlation
  27. Comparing Regression Models
  28. b vs β
  29. Categorical Predictors
  30. Prediction Practice: Part 3
  31. Ordinal Predictor Variables
  32. Interactions with Categorical Predictors
  33. Centering
  34. Some Scaling Issues
  35. Analysis of Covariance
  36. Aptitude Treatment Interaction
  37. Logistic Regression
  38. Robust Regression
  39. Path Analysis
  40. Linear Structural Models
  41. Specification Error
  42. Regression with Clustered Data
  43. Multilevel Data Issues
  44. Regression with Measurement Error
  45. Nonlinear Regression
  46. Weighted Least Squares
  47. Regression Analysis in Publications
  48. The Regression Zoo
  49. The Matrix
  50. Generalized Linear Models


Advanced

Phil Ender