Each individual tastes each of the three colas. Between tastes subjects eat a soda cracker. Each subject receives the colas in a different order. Each subject then selects which soda he/she likes best.
Results: Pepsi 85, Coke 57, RC 78.
O | E | O-E | (O-E)2 | (O-E)2/E | |
---|---|---|---|---|---|
Pepsi | 85 | 73.33 | 11.67 | 136.19 | 1.86 |
Coke | 57 | 73.33 | -16.33 | 266.67 | 3.64 |
RC | 78 | 73.33 | 4.67 | 21.81 | 0.3 |
Totals | 220 | 219.99 | χ2 = | 5.8 |
df = rows - 1 = 3 - 1 = 2.
Critical value of χ2 = 5.99 at alpha = 0.05.
Observed value of χ2 = 5.8.
Decision: Fail to reject H0.
clear input o 85 57 78 end generate e = 220/3 chitest o e observed frequencies from o; expected frequencies from e Pearson chi2(2) = 5.7909 Pr = 0.055 likelihood-ratio chi2(2) = 5.9984 Pr = 0.050 +-------------------------------------------+ | observed expected obs - exp Pearson | |-------------------------------------------| | 85 73.333 11.667 1.362 | | 57 73.333 -16.333 -1.907 | | 78 73.333 4.667 0.545 | +-------------------------------------------+
She wants to test the absences at the 0.1 significance level.
O | E | O-E | (O-E)2 | (O-E)2/E | |
---|---|---|---|---|---|
Mon | 73 | 61 | 12 | 144 | 2.4 |
Tue | 57 | 61 | -4 | 16 | 0.3 |
Wed | 48 | 61 | -13 | 169 | 2.8 |
Thu | 59 | 61 | -2 | 4 | 0.1 |
Fri | 68 | 61 | 7 | 49 | 0.8 |
Totals | 305 | 305 | χ2 = | 6.4 |
df = rows - 1 = 5 - 1 = 4.
Critical value of χ2 = 7.78 at alpha = 0.10.
Observed value of χ2 = 6.4.
Decision: Fail to reject H0.
clear input o 73 57 48 59 68 end sum o Variable | Obs Mean Std. Dev. Min Max -------------+----------------------------------------------------- o | 5 61 9.77241 48 73 generate e = r(sum)/5 chitest o e observed frequencies from o; expected frequencies from e Pearson chi2(4) = 6.2623 Pr = 0.180 likelihood-ratio chi2(4) = 6.3196 Pr = 0.177 +-------------------------------------------+ | observed expected obs - exp Pearson | |-------------------------------------------| | 73 61.000 12.000 1.536 | | 57 61.000 -4.000 -0.512 | | 48 61.000 -13.000 -1.664 | | 59 61.000 -2.000 -0.256 | | 68 61.000 7.000 0.896 | +-------------------------------------------+ chitable 4 Critical Values of Chi-square df .50 .25 .10 .05 .025 .01 .001 4 3.36 5.39 7.78 9.49 11.14 13.28 18.47
An SRS of 1220 individuals in 1995 found 585 Anglo, 390 Hispanic, 109 African-American and 136 Asian.
Have the demographics in the county changed greater then would be expected by chance
O | E | O-E | (O-E)2 | (O-E)2/E | |
---|---|---|---|---|---|
An | 585 | 634.4 | 49.4 | 2,440.36 | 3.85 |
H | 390 | 341.6 | 48.4 | 2,342.56 | 6.86 |
AA | 109 | 146.4 | -37.4 | 1,398.76 | 9.55 |
As | 136 | 97.6 | 38.4 | 1,474.56 | 15.12 |
Totals | 1220 | 1220 | χ2 = | 35.38 |
df = rows - 1 = 4 - 1 = 3.
Critical value of χ2 = 7.81 at alpha = 0.05.
Observed value of χ2 = 35.38.
Decision: Reject H0.
clear input o 585 390 109 136 end input e 634.4 341.6 146.4 97.6 end list +-------------+ | o e | |-------------| 1. | 585 634.4 | 2. | 390 341.6 | 3. | 109 146.4 | 4. | 136 97.6 | +-------------+ chitest o e observed frequencies from o; expected frequencies from e Pearson chi2(3) = 35.3669 Pr = 0.000 likelihood-ratio chi2(3) = 34.4401 Pr = 0.000 +-------------------------------------------+ | observed expected obs - exp Pearson | |-------------------------------------------| | 585 634.400 -49.400 -1.961 | | 390 341.600 48.400 2.619 | | 109 146.400 -37.400 -3.091 | | 136 97.600 38.400 3.887 | +-------------------------------------------+
Now let's use the hsb2 dataset and the variable race.
use http://www.philender.com/courses/data/hsb2, clear chitest race, count /* down loaded from the Internet */ Chi-square test: observed frequencies from race expected frequencies equal Pearson chi2(3) = 242.4400 Pr = 0.000 likelihood-ratio chi2(3) = 203.5732 Pr = 0.000 residuals observed expected classic Pearson 1. 24 50.000 -26.000 -3.677 2. 11 50.000 -39.000 -5.515 3. 20 50.000 -30.000 -4.243 4. 145 50.000 95.000 13.435
Intro Home Page
Phil Ender, 28nov05, 22Nov00