Maximum Likelihood Factor Analysis Example -- Harman -- pg Variables: y1 total population y2 median school years y3 total employment y4 misc. profess services y5 median value house ----------------------------------------------------------------------------- data socfac (type=corr); _type_='corr'; input _name_ $ y1 y2 y3 y4 y5; cards; y1 1.00000 0.00975 0.97245 0.43887 0.02241 y2 0.00975 1.00000 0.15428 0.69141 0.86307 y3 0.97245 0.15428 1.00000 0.51472 0.12193 y4 0.43887 0.69141 0.51472 1.00000 0.77765 y5 0.02241 0.86307 0.12193 0.77765 1.00000 ; proc factor method=ml priors=smc heywood rotate=varimax rotate=promax; title 'ML Factor Analysis Example'; run; ----------------------------------------------------------------------------- ML Factor Analysis Example Initial Factor Method: Maximum Likelihood Prior Communality Estimates: SMC Y1 Y2 Y3 Y4 Y5 0.968593 0.822273 0.969182 0.785718 0.847008 Preliminary Eigenvalues: Total = 76.1173815 Average = 15.2234763 1 2 3 4 5 Eigenvalue 63.7028 13.0539 0.3275 -0.3473 -0.6195 Difference 50.6489 12.7263 0.6748 0.2722 Proportion 0.8369 0.1715 0.0043 -0.0046 -0.0081 Cumulative 0.8369 1.0084 1.0127 1.0081 1.0000 2 factors will be retained by the PROPORTION criterion. Iter Criterion Ridge Change Communalities 1 0.34305 0.000 0.04710 1.00000 0.80672 0.95058 0.79348 0.89411 2 0.30713 0.000 0.03069 1.00000 0.80821 0.96024 0.81047 0.92480 3 0.30670 0.000 0.00629 1.00000 0.81149 0.95949 0.81676 0.92023 4 0.30665 0.000 0.00218 1.00000 0.80985 0.95963 0.81498 0.92241 5 0.30665 0.000 0.00071 1.00000 0.81019 0.95956 0.81569 0.92187 Convergence criterion satisfied. Initial Factor Method: Maximum Likelihood Significance tests based on 10000 observations: Test of H0: No common factors. vs HA: At least one common factor. Chi-square = 63803.130 df = 10 Prob>chi**2 = 0.0001 Test of H0: 2 Factors are sufficient. vs HA: More factors are needed. Chi-square = 3065.006 df = 1 Prob>chi**2 = 0.0001 Chi-square without Bartlett's correction = 3066.1812237 Akaike's Information Criterion = 3064.1812237 Schwarz's Bayesian Criterion = 3056.9708833 Tucker and Lewis's Reliability Coefficient = 0.5196965955 Initial Factor Method: Maximum Likelihood Squared Canonical Correlations FACTOR1 FACTOR2 1.000000 0.951887 Eigenvalues of the Weighted Reduced Correlation Matrix: Total = 19.7845481 Average = 4.94613703 1 2 3 4 5 Eigenvalue . 19.7845 0.5431 -0.0398 -0.5033 Difference . 19.2414 0.5829 0.4636 Proportion . 1.0000 0.0275 -0.0020 -0.0254 Cumulative . 1.0000 1.0275 1.0254 1.0000 Initial Factor Method: Maximum Likelihood Factor Pattern FACTOR1 FACTOR2 Y1 1.00000* 0.00000 total population Y2 0.00975 0.90003* median school years Y3 0.97245* 0.11797 total employment Y4 0.43887 0.78930* misc. profess services Y5 0.02241 0.95989* median value house Variance explained by each factor FACTOR1 FACTOR2 Weighted 24.435550 19.784547 Unweighted 2.138863 2.368350 Initial Factor Method: Maximum Likelihood Final Communality Estimates and Variable Weights Total Communality: Weighted = 44.220097 Unweighted = 4.507214 Y1 Y2 Y3 Y4 Y5 Communality 1.000000 0.810150 0.959576 0.815599 0.921888 Weight . 5.268444 24.727338 5.425519 12.798798 Prerotation Method: Varimax Orthogonal Transformation Matrix 1 2 1 0.02133 0.99977 2 0.99977 -0.02133 Rotated Factor Pattern FACTOR1 FACTOR2 Y1 0.02133 0.99977* total population Y2 0.90003* -0.00945 median school years Y3 0.13869 0.96971* total employment Y4 0.79848* 0.42193 misc. profess services Y5 0.96015* 0.00193 median value house Prerotation Method: Varimax Variance explained by each factor FACTOR1 FACTOR2 Weighted 20.001570 24.218527 Unweighted 2.389209 2.118004 Final Communality Estimates and Variable Weights Total Communality: Weighted = 44.220097 Unweighted = 4.507214 Y1 Y2 Y3 Y4 Y5 Communality 1.000000 0.810150 0.959576 0.815599 0.921888 Weight . 5.268444 24.727338 5.425519 12.798798 Rotation Method: Promax Target Matrix for Procrustean Transformation FACTOR1 FACTOR2 Y1 0.00001 1.00000 Y2 0.99984 -0.00000 Y3 0.00284 0.97075 Y4 0.69117 0.10205 Y5 1.00000 0.00000 Procrustean Transformation Matrix 1 2 1 1.03022 -0.09567 2 -0.10099 0.95877 Rotation Method: Promax Normalized Oblique Transformation Matrix 1 2 1 -0.07781 1.01233 2 1.01678 -0.12288 Inter-factor Correlations FACTOR1 FACTOR2 FACTOR1 1.00000 0.19589 FACTOR2 0.19589 1.00000 Rotation Method: Promax Rotated Factor Pattern (Std Reg Coefs) FACTOR1 FACTOR2 Y1 -0.07781 1.01233* total population Y2 0.91438* -0.10072 median school years Y3 0.04428 0.96994* total employment Y4 0.76840* 0.34729 misc. profess services Y5 0.97426* -0.09526 median value house Reference Axis Correlations FACTOR1 FACTOR2 FACTOR1 1.00000 -0.19589 FACTOR2 -0.19589 1.00000 Rotation Method: Promax Reference Structure (Semipartial Correlations) FACTOR1 FACTOR2 Y1 -0.07630 0.99271 Y2 0.89666 -0.09877 Y3 0.04343 0.95115 Y4 0.75351 0.34056 Y5 0.95538 -0.09342 Variance explained by each factor eliminating other factors FACTOR1 FACTOR2 Weighted 19.045100 23.162829 Unweighted 2.292243 2.024633 Rotation Method: Promax Factor Structure (Correlations) FACTOR1 FACTOR2 Y1 0.12050 0.99708* total population Y2 0.89465* 0.07840 median school years Y3 0.23429 0.97862* total employment Y4 0.83643* 0.49782 misc. profess services Y5 0.95559* 0.09559 median value house Variance explained by each factor ignoring other factors FACTOR1 FACTOR2 Weighted 21.057268 25.174997 Unweighted 2.482581 2.214971 Rotation Method: Promax Final Communality Estimates and Variable Weights Total Communality: Weighted = 44.220097 Unweighted = 4.507214 Y1 Y2 Y3 Y4 Y5 Communality 1.000000 0.810150 0.959576 0.815599 0.921888 Weight . 5.268444 24.727338 5.425519 12.798798