Iterated Factored Analysis Example -- Harman -- pg 164 Same data as Assignment 10 Based on 172 9 to 12 year old children Variables: y1 sociability y2 sorrow y3 tenderness y4 joy y5 wonder y6 disgust y6 anger y8 fear ----------------------------------------------------------------------------- data emofac (type=corr); _type_='corr'; input _name_ $ y1 y2 y3 y4 y5 y6 y7 y8; cards; y1 1.00 0.83 0.81 0.80 0.71 0.54 0.53 0.24 y2 0.83 1.00 0.87 0.62 0.59 0.58 0.44 0.45 y3 0.81 0.87 1.00 0.63 0.37 0.30 0.12 0.33 y4 0.80 0.62 0.63 1.00 0.49 0.30 0.28 0.29 y5 0.71 0.59 0.37 0.49 1.00 0.34 0.55 0.19 y6 0.54 0.58 0.30 0.30 0.34 1.00 0.32 0.21 y7 0.53 0.44 0.12 0.28 0.55 0.32 1.00 0.10 y8 0.24 0.45 0.33 0.29 0.19 0.21 0.10 1.00 ; proc factor method=prinit rotate=varimax rotate=promax; title 'Iterated Factor Analysis Example'; run; ----------------------------------------------------------------------------- Iterated Factor Analysis Example Initial Factor Method: Iterated Principal Factor Analysis Prior Communality Estimates: ONE Preliminary Eigenvalues: Total = 8 Average = 1 1 2 3 4 Eigenvalue 4.4178 1.1362 0.8436 0.7236 Difference 3.2816 0.2926 0.1200 0.2976 Proportion 0.5522 0.1420 0.1054 0.0905 Cumulative 0.5522 0.6942 0.7997 0.8901 5 6 7 8 Eigenvalue 0.4261 0.3887 0.0842 -0.0201 Difference 0.0374 0.3044 0.1044 Proportion 0.0533 0.0486 0.0105 -0.0025 Cumulative 0.9434 0.9920 1.0025 1.0000 2 factors will be retained by the MINEIGEN criterion. Initial Factor Method: Iterated Principal Factor Analysis Iter Change Communalities 1 0.615524 0.92615 0.89206 0.83682 0.63540 0.69419 0.38448 0.76974 0.41511 2 0.227148 0.94327 0.89470 0.84753 0.55976 0.61043 0.28851 0.72103 0.18796 3 0.035240 0.95828 0.89999 0.87106 0.54126 0.58074 0.27798 0.69641 0.15272 4 0.019137 0.96591 0.90138 0.89020 0.53517 0.57094 0.27761 0.67750 0.14803 5 0.016398 0.96953 0.90090 0.90531 0.53254 0.56894 0.27819 0.66110 0.14699 6 0.014608 0.97132 0.89983 0.91765 0.53109 0.56997 0.27874 0.64649 0.14647 7 0.012995 0.97227 0.89869 0.92803 0.53011 0.57209 0.27920 0.63350 0.14608 8 0.011448 0.97285 0.89763 0.93694 0.52936 0.57449 0.27959 0.62205 0.14575 9 0.009970 0.97324 0.89668 0.94470 0.52875 0.57684 0.27991 0.61208 0.14547 10 0.008592 0.97353 0.89586 0.95151 0.52823 0.57898 0.28020 0.60349 0.14521 11 0.007337 0.97375 0.89512 0.95751 0.52778 0.58088 0.28044 0.59615 0.14498 12 0.006221 0.97393 0.89448 0.96281 0.52740 0.58252 0.28065 0.58993 0.14477 13 0.005246 0.97408 0.89390 0.96749 0.52706 0.58391 0.28082 0.58469 0.14458 14 0.004407 0.97419 0.89339 0.97162 0.52677 0.58509 0.28098 0.58028 0.14440 15 0.003694 0.97428 0.89293 0.97526 0.52652 0.58607 0.28111 0.57658 0.14425 16 0.003201 0.97435 0.89253 0.97846 0.52630 0.58689 0.28122 0.57349 0.14411 17 0.002812 0.97441 0.89217 0.98127 0.52610 0.58757 0.28132 0.57090 0.14399 18 0.002466 0.97445 0.89186 0.98374 0.52594 0.58814 0.28141 0.56874 0.14388 19 0.002159 0.97449 0.89158 0.98590 0.52580 0.58860 0.28148 0.56692 0.14378 20 0.001888 0.97452 0.89133 0.98779 0.52567 0.58899 0.28154 0.56540 0.14370 21 0.001649 0.97454 0.89112 0.98944 0.52556 0.58931 0.28160 0.56411 0.14362 22 0.001438 0.97455 0.89093 0.99087 0.52547 0.58957 0.28164 0.56303 0.14356 23 0.001253 0.97457 0.89077 0.99213 0.52539 0.58979 0.28168 0.56212 0.14350 24 0.001091 0.97458 0.89062 0.99322 0.52532 0.58998 0.28172 0.56134 0.14345 25 0.000949 0.97458 0.89050 0.99417 0.52526 0.59013 0.28175 0.56069 0.14341 Convergence criterion satisfied. Eigenvalues of the Reduced Correlation Matrix: Total = 4.9602207 Average = 0.62002759 1 2 3 4 Eigenvalue 4.1685 0.7920 0.2707 0.0683 Difference 3.3766 0.5212 0.2025 0.0093 Proportion 0.8404 0.1597 0.0546 0.0138 Cumulative 0.8404 1.0001 1.0546 1.0684 Initial Factor Method: Iterated Principal Factor Analysis 5 6 7 8 Eigenvalue 0.0590 -0.0409 -0.1584 -0.1990 Difference 0.0999 0.1175 0.0406 Proportion 0.0119 -0.0082 -0.0319 -0.0401 Cumulative 1.0803 1.0721 1.0401 1.0000 Initial Factor Method: Iterated Principal Factor Analysis Factor Pattern FACTOR1 FACTOR2 Y1 0.98399* 0.07966 sociability Y2 0.93683* -0.11332 sorrow Y3 0.83456* -0.54560* tenderness Y4 0.72062* -0.07726 joy Y5 0.67971* 0.35794 wonder Y6 0.51651* 0.12234 disgust Y7 0.50186* 0.55572* anger Y8 0.35525 -0.13116 fear Variance explained by each factor FACTOR1 FACTOR2 4.168522 0.791953 Initial Factor Method: Iterated Principal Factor Analysis Final Communality Estimates: Total = 4.960475 Y1 Y2 Y3 Y4 0.974583 0.890498 0.994166 0.525258 Y5 Y6 Y7 Y8 0.590129 0.281748 0.560687 0.143406 Prerotation Method: Varimax Orthogonal Transformation Matrix 1 2 1 0.79500 0.60660 2 -0.60660 0.79500 Prerotation Method: Varimax Rotated Factor Pattern FACTOR1 FACTOR2 Y1 0.73395* 0.66023* sociability Y2 0.81353* 0.47820 sorrow Y3 0.99444* 0.07249 tenderness Y4 0.61976* 0.37571 joy Y5 0.32325 0.69688* wonder Y6 0.33642 0.41058 disgust Y7 0.06188 0.74623* anger Y8 0.36199 0.11123 fear Variance explained by each factor FACTOR1 FACTOR2 2.926048 2.034427 Prerotation Method: Varimax Final Communality Estimates: Total = 4.960475 Y1 Y2 Y3 Y4 0.974583 0.890498 0.994166 0.525258 Y5 Y6 Y7 Y8 0.590129 0.281748 0.560687 0.143406 Rotation Method: Promax Target Matrix for Procrustean Transformation FACTOR1 FACTOR2 Y1 0.41421 0.30221 Y2 0.64583 0.13147 Y3 1.00000 0.00039 Y4 0.63032 0.14075 Y5 0.07510 0.75425 Y6 0.25662 0.46758 Y7 0.00057 1.00000 Y8 0.88040 0.02560 Rotation Method: Promax Procrustean Transformation Matrix 1 2 1 1.06319 -0.33134 2 -0.28686 1.14112 Normalized Oblique Transformation Matrix 1 2 1 0.71329 0.42229 2 -0.92770 1.09137 Rotation Method: Promax Inter-factor Correlations FACTOR1 FACTOR2 FACTOR1 1.00000 0.51938 FACTOR2 0.51938 1.00000 Rotation Method: Promax Rotated Factor Pattern (Std Reg Coefs) FACTOR1 FACTOR2 Y1 0.62797* 0.50247 sociability Y2 0.77336* 0.27194 sorrow Y3 1.10144 -0.24303 tenderness Y4 0.58568* 0.21999 joy Y5 0.15278 0.67767* wonder Y6 0.25493 0.35163 disgust Y7 -0.15757 0.81842* anger Y8 0.37507 0.00688 fear Rotation Method: Promax Reference Axis Correlations FACTOR1 FACTOR2 FACTOR1 1.00000 -0.51938 FACTOR2 -0.51938 1.00000 Rotation Method: Promax Reference Structure (Semipartial Correlations) FACTOR1 FACTOR2 Y1 0.53662 0.42938 Y2 0.66087 0.23238 Y3 0.94122 -0.20768 Y4 0.50049 0.18799 Y5 0.13055 0.57910 Y6 0.21785 0.30048 Y7 -0.13465 0.69938 Y8 0.32052 0.00587 Variance explained by each factor eliminating other factors FACTOR1 FACTOR2 2.046472 1.231652 Rotation Method: Promax Factor Structure (Correlations) FACTOR1 FACTOR2 Y1 0.88894* 0.82862* sociability Y2 0.91460* 0.67361* sorrow Y3 0.97521* 0.32903 tenderness Y4 0.69994* 0.52418* joy Y5 0.50475 0.75702* wonder Y6 0.43756 0.48404 disgust Y7 0.26750 0.73658* anger Y8 0.37864 0.20168 fear Variance explained by each factor ignoring other factors FACTOR1 FACTOR2 3.728823 2.914003 Rotation Method: Promax Final Communality Estimates: Total = 4.960475 Y1 Y2 Y3 Y4 0.974583 0.890498 0.994166 0.525258 Y5 Y6 Y7 Y8 0.590129 0.281748 0.560687 0.143406