MANOVA CRF-32 GLM Example Same data as Assignment 8 data crf32; input a b y1 y2; cards; 1 1 10 21 1 1 12 22 1 1 9 19 1 1 10 21 1 1 14 23 1 2 9 14 1 2 8 15 1 2 11 16 1 2 9 17 1 2 9 17 2 1 11 23 2 1 14 27 2 1 13 24 2 1 15 26 2 1 14 24 2 2 11 15 2 2 12 18 2 2 10 16 2 2 9 17 2 2 9 18 3 1 8 17 3 1 7 15 3 1 10 18 3 1 8 17 3 1 7 19 3 2 9 22 3 2 8 18 3 2 10 17 3 2 9 19 3 2 8 19 ; proc glm; classes a b; model y1 y2 = a b a*b; contrast '1vs2' a 1 -1 0; contrast '1vs3' a 1 0 -1; contrast '2vs3' a 0 1 -1; manova h=a b a*b m=(1 -1, 1 1); run; ---------------------------------------------------------------------------- General Linear Models Procedure Class Level Information Class Levels Values A 3 1 2 3 B 2 1 2 Number of observations in data set = 30 Dependent Variable: Y1 Sum of Mean Source DF Squares Square F Value Pr > F Model 5 93.10000000 18.62000000 9.80 0.0001 Error 24 45.60000000 1.90000000 Corrected Total 29 138.70000000 R-Square C.V. Root MSE Y1 Mean 0.671233 13.64757 1.3784049 10.100000 Dependent Variable: Y1 Source DF Type I SS Mean Square F Value Pr > F A 2 57.80000000 28.90000000 15.21 0.0001 B 1 14.70000000 14.70000000 7.74 0.0104 A*B 2 20.60000000 10.30000000 5.42 0.0114 Source DF Type III SS Mean Square F Value Pr > F A 2 57.80000000 28.90000000 15.21 0.0001 B 1 14.70000000 14.70000000 7.74 0.0104 A*B 2 20.60000000 10.30000000 5.42 0.0114 Contrast DF Contrast SS Mean Square F Value Pr > F 1vs2 1 14.45000000 14.45000000 7.61 0.0109 1vs3 1 14.45000000 14.45000000 7.61 0.0109 2vs3 1 57.80000000 57.80000000 30.42 0.0001 Dependent Variable: Y2 Sum of Mean Source DF Squares Square F Value Pr > F Model 5 283.46666667 56.69333333 24.30 0.0001 Error 24 56.00000000 2.33333333 Corrected Total 29 339.46666667 R-Square C.V. Root MSE Y2 Mean 0.835035 7.983581 1.5275252 19.133333 Dependent Variable: Y2 Source DF Type I SS Mean Square F Value Pr > F A 2 42.46666667 21.23333333 9.10 0.0011 B 1 112.13333333 112.13333333 48.06 0.0001 A*B 2 128.86666667 64.43333333 27.61 0.0001 Source DF Type III SS Mean Square F Value Pr > F A 2 42.46666667 21.23333333 9.10 0.0011 B 1 112.13333333 112.13333333 48.06 0.0001 A*B 2 128.86666667 64.43333333 27.61 0.0001 Contrast DF Contrast SS Mean Square F Value Pr > F 1vs2 1 26.45000000 26.45000000 11.34 0.0026 1vs3 1 0.80000000 0.80000000 0.34 0.5637 2vs3 1 36.45000000 36.45000000 15.62 0.0006 General Linear Models Procedure Multivariate Analysis of Variance M Matrix Describing Transformed Variables Y1 Y2 MVAR1 1 -1 MVAR2 1 1 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for A E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 1.44074791 92.81 0.03145086 0.08388356 0.11166794 7.19 0.12386138 -0.01158856 Manova Test Criteria and F Approximations for the Hypothesis of no Overall A Effect on the variables defined by the M Matrix Transformation H = Type III SS&CP Matrix for A E = Error SS&CP Matrix S=2 M=-0.5 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.36855473 7.4429 4 46 0.0001 Pillai's Trace 0.69074032 6.3310 4 48 0.0004 Hotelling-Lawley Trace 1.55241585 8.5383 4 44 0.0001 Roy's Greatest Root 1.44074791 17.2890 2 24 0.0001 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact. Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for B E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 2.00259072 100.00 0.06569691 -0.06734426 0.00000000 0.00 0.10961165 0.05133710 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall B Effect on the variables defined by the M Matrix Transformation H = Type III SS&CP Matrix for B E = Error SS&CP Matrix S=1 M=0 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.33304572 23.0298 2 23 0.0001 Pillai's Trace 0.66695428 23.0298 2 23 0.0001 Hotelling-Lawley Trace 2.00259072 23.0298 2 23 0.0001 Roy's Greatest Root 2.00259072 23.0298 2 23 0.0001 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for A*B E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 2.30781925 99.80 0.06087509 -0.06951003 0.00460326 0.20 0.11236112 0.04836427 Manova Test Criteria and F Approximations for the Hypothesis of no Overall A*B Effect on the variables defined by the M Matrix Transformation H = Type III SS&CP Matrix for A*B E = Error SS&CP Matrix S=2 M=-0.5 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.30092873 9.4636 4 46 0.0001 Pillai's Trace 0.70226819 6.4938 4 48 0.0003 Hotelling-Lawley Trace 2.31242251 12.7183 4 44 0.0001 Roy's Greatest Root 2.30781925 27.6938 2 24 0.0001 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact. Characteristic Roots and Vectors of: E Inverse * H, where H = Contrast SS&CP Matrix for 1vs2 E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 0.57418716 100.00 -0.01471668 0.08251168 0.00000000 0.00 0.12694179 0.01904127 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall 1vs2 Effect on the variables defined by the M Matrix Transformation H = Contrast SS&CP Matrix for 1vs2 E = Error SS&CP Matrix S=1 M=0 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.63524848 6.6032 2 23 0.0054 Pillai's Trace 0.36475152 6.6032 2 23 0.0054 Hotelling-Lawley Trace 0.57418716 6.6032 2 23 0.0054 Roy's Greatest Root 0.57418716 6.6032 2 23 0.0054 Characteristic Roots and Vectors of: E Inverse * H, where H = Contrast SS&CP Matrix for 1vs3 E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 0.32894761 100.00 0.09261787 0.06480545 0.00000000 0.00 0.08804958 -0.05450688 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall 1vs3 Effect on the variables defined by the M Matrix Transformation H = Contrast SS&CP Matrix for 1vs3 E = Error SS&CP Matrix S=1 M=0 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.75247511 3.7829 2 23 0.0380 Pillai's Trace 0.24752489 3.7829 2 23 0.0380 Hotelling-Lawley Trace 0.32894761 3.7829 2 23 0.0380 Roy's Greatest Root 0.32894761 3.7829 2 23 0.0380 Characteristic Roots and Vectors of: E Inverse * H, where H = Contrast SS&CP Matrix for 2vs3 E = Error SS&CP Matrix Variables have been transformed by the M Matrix Characteristic Percent Characteristic Vector V'EV=1 Root MVAR1 MVAR2 1.42548900 100.00 0.03515125 0.08349830 0.00000000 0.00 0.12286247 -0.01409897 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall 2vs3 Effect on the variables defined by the M Matrix Transformation H = Contrast SS&CP Matrix for 2vs3 E = Error SS&CP Matrix S=1 M=0 N=10.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.41228800 16.3931 2 23 0.0001 Pillai's Trace 0.58771200 16.3931 2 23 0.0001 Hotelling-Lawley Trace 1.42548900 16.3931 2 23 0.0001 Roy's Greatest Root 1.42548900 16.3931 2 23 0.0001