Multivariate Analysis
Linear Structural Models


It's Greek to me

Β - beta
η - eta
ξ - xi
ζ - zeta
Γ - gamma
Λ - lambda (upper case)
λ - lambda (lower case)
δ - delta
ε - epsilon

Structural Equation Model

The structural model is a regression model with exogenous and endogenous latent variables. These latent variables can be thought of as factors.

Notation

  • Β - coefficients of effects among endogenous variables.
  • Γ - coefficients of effects of exogeneous variables on endogenous variables.
  • η - vector of latent endogenous variables.
  • ξ - vector of latent exogenous variables.
  • ζ - vector of residuals or errors.

    Measurement Model

    The measure model involves the use of confirmatory factor analysis.

    Notation

  • y - vector of measures of dependent variables.
  • Λy - matrix of coefficients or loadings of y on the latent endogenous variables.
  • η - vector of latent endogenous variables.
  • ε - vector of errors of measurement of y.
  • x - vector of measures of predictor variables.
  • Λx - matrix of coefficients or loadings of x on the latent exogenous variables.
  • ξ - vector of latent exogenous variables.
  • δ - vector of errors of measurement of x.

    Example with Full Notation

    In Mplus the above model would be written as follows:

    
    MODEL:
    * measurement model/confirmatory factor analysis
      xi1  by   x1 x2 x3;
      xi2  by   x4 x5;
      eta1 by   y1 y2;
      eta2 by   y2 y3 y4;
      
    * structural model
      xi1  with xi2;
      eta1 on   xi1;
      eta2 on   xi2 eta1;
    SEM Example with Output

    INPUT INSTRUCTIONS
    
      TITLE:  cont3
    
              Classic structural equation model with multiple indicators
              used in a study of the stability of alienation.
              
      DATA:  FILE IS wheacov.dat;
             TYPE IS COVARIANCE;
             NOBS ARE 932;
    
      VARIABLE:  NAMES ARE anomia67 power67 anomia71 power71 educ sei;
                 USEVAR =  anomia67 power67 anomia71 power71 educ sei;
    
      MODEL:
    
      !        first the measurement model part using the keyword BY:
    
              ses BY educ sei;
              alien67 BY anomia67 power67;
              alien71 BY anomia71 power71;
    
      !        next the structural model part using the keyword ON:
    
              alien71 ON alien67 ses;
              alien67 ON ses;
    
      !        and then adding correlated residuals over time using
      !        the keyword WITH:
    
              anomia67 WITH anomia71;
              power67 WITH power71;
    
      OUTPUT:
    
              standardized;
    
    
    INPUT READING TERMINATED NORMALLY
    
    SUMMARY OF ANALYSIS
    
    Number of groups                                                 1
    Number of observations                                         932
    
    Number of dependent variables                                    6
    Number of independent variables                                  0
    Number of continuous latent variables                            3
    
    Observed dependent variables
    
      Continuous
       ANOMIA67    POWER67     ANOMIA71    POWER71     EDUC        SEI
    
    Continuous latent variables
       SES         ALIEN67     ALIEN71
    
    
    Estimator                                                       ML
    Information matrix                                        EXPECTED
    Maximum number of iterations                                  1000
    Convergence criterion                                    0.500D-04
    Maximum number of steepest descent iterations                   20
    
    Input data file(s)
      wheacov.dat
    
    Input data format  FREE
    
    THE MODEL ESTIMATION TERMINATED NORMALLY
    
    TESTS OF MODEL FIT
    
    Chi-Square Test of Model Fit
    
              Value                              4.771
              Degrees of Freedom                     4
              P-Value                           0.3116
    
    Chi-Square Test of Model Fit for the Baseline Model
    
              Value                           2133.794
              Degrees of Freedom                    15
              P-Value                           0.0000
    
    CFI/TLI
    
              CFI                                1.000
              TLI                                0.999
    
    Loglikelihood
    
              H0 Value                      -15213.256
              H1 Value                      -15210.870
    
    Information Criteria
    
              Number of Free Parameters             17
              Akaike (AIC)                   30460.511
              Bayesian (BIC)                 30542.746
              Sample-Size Adjusted BIC       30488.755
                (n* = (n + 2) / 24)
    
    RMSEA (Root Mean Square Error Of Approximation)
    
              Estimate                           0.014
              90 Percent C.I.                    0.000  0.053
              Probability RMSEA <= .05           0.928
    
    SRMR (Standardized Root Mean Square Residual)
    
              Value                              0.007
    
    MODEL RESULTS
    
                       Estimates     S.E.  Est./S.E.    Std     StdYX
    
     SES      BY
        EDUC               1.000    0.000      0.000    2.607    0.841
        SEI                5.221    0.422     12.367   13.611    0.642
    
     ALIEN67  BY
        ANOMIA67           1.000    0.000      0.000    2.663    0.775
        POWER67            0.979    0.062     15.896    2.606    0.852
    
     ALIEN71  BY
        ANOMIA71           1.000    0.000      0.000    2.850    0.806
        POWER71            0.922    0.059     15.501    2.627    0.832
    
     ALIEN71  ON
        ALIEN67            0.607    0.051     11.895    0.567    0.567
        SES               -0.227    0.052     -4.337   -0.208   -0.208
    
     ALIEN67  ON
        SES               -0.575    0.056    -10.197   -0.563   -0.563
    
     ANOMIA67 WITH
        ANOMIA71           1.622    0.314      5.173    1.622    0.133
    
     POWER67  WITH
        POWER71            0.340    0.261      1.302    0.340    0.035
    
     Variances
        SES                6.796    0.649     10.476    1.000    1.000
    
     Residual Variances
        ANOMIA67           4.730    0.453     10.438    4.730    0.400
        POWER67            2.564    0.403      6.363    2.564    0.274
        ANOMIA71           4.397    0.515      8.537    4.397    0.351
        POWER71            3.072    0.434      7.078    3.072    0.308
        EDUC               2.804    0.507      5.532    2.804    0.292
        SEI              264.537   18.125     14.595  264.537    0.588
        ALIEN67            4.842    0.467     10.359    0.683    0.683
        ALIEN71            4.084    0.404     10.104    0.503    0.503
    
    
    R-SQUARE
    
        Observed
        Variable  R-Square
        ANOMIA67     0.600
        POWER67      0.726
        ANOMIA71     0.649
        POWER71      0.692
        EDUC         0.708
        SEI          0.412
    
         Latent
        Variable  R-Square
        ALIEN67      0.317
        ALIEN71      0.497


    Multivariate Course Page

    Phil Ender, 30nov05, 19Feb98