Q factor analysis involves factoring observations rather than variables. In many ways, it is more similar to cluster analysis than it is to factor analysis. Basically, you have to transpose the data matrix so that the rows are the variables and the columns are the observations.
In this example, we will use the same data that was in one of the cluster analysis examples, eight dental variables on 32 species of mammals.
Q Factor Analysis Example in Stata
input brnbat mole silbat pigbat houbat redbat pika rabbit beaver /* */ grndhog grsquir houmouse porcupin wolf bear raccoon marten weasel /* */ wolverin badger rivott seaott jaguar cougar furseal sealion grseal /* */ eleseal reindeer elk deer moose 2 3 2 2 2 1 2 2 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 0 0 0 0 3 2 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 2 3 3 2 2 2 1 4 4 4 4 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 3 3 2 2 1 2 2 3 2 2 1 0 1 4 4 4 4 3 4 3 4 3 3 3 4 4 3 4 3 3 3 3 3 3 3 2 2 2 2 2 1 1 1 0 1 4 4 4 4 3 4 3 3 3 2 2 4 4 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 1 1 1 1 1 1 1 1 1 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 2 1 3 3 3 3 end factor brnbat-moose, ipf factor(3) (obs=8) (collinear variables specified) (iterated principal factors; 3 factors retained) Factor Eigenvalue Difference Proportion Cumulative ------------------------------------------------------------------ 1 17.44252 7.51757 0.5887 0.5887 2 9.92494 7.66604 0.3350 0.9238 3 2.25891 1.12029 0.0762 1.0000 4 1.13862 0.81171 0.0384 1.0384 5 0.32691 0.10448 0.0110 1.0495 ... [output omitted] rotate, varimax (varimax rotation) Rotated Factor Loadings Variable | 1 2 3 Uniqueness ----------+---------------------------------------------- brnbat | 0.47177 0.58486* -0.65675* 0.00405 mole | 0.58140* 0.74506* -0.20275 0.06576 silbat | 0.27091 0.60037* -0.67497* 0.11058 pigbat | 0.09860 0.66601* -0.67429* 0.09205 houbat | -0.11158 0.59375* -0.59665* 0.27902 redbat | -0.05033 0.53801* -0.84479* -0.00566 pika | 0.27102 0.94664* -0.18404 -0.00346 rabbit | 0.39959 0.87017* -0.17291 0.05323 beaver | 0.03043 0.90797* -0.33436 0.06286 grndhog | 0.03043 0.90797* -0.33436 0.06286 grsquir | -0.13472 0.93302* -0.34169 -0.00542 houmouse | -0.38545 0.83741* -0.28219 0.07054 porcupin | -0.13472 0.93302* -0.34169 -0.00542 wolf | 0.88396* 0.31202 -0.31420 0.02254 bear | 0.88396* 0.31202 -0.31420 0.02254 raccoon | 0.82558* 0.31879 -0.31171 0.11962 marten | 0.97446* -0.01751 -0.20838 0.00669 weasel | 0.92060* 0.00195 -0.23847 0.09562 wolverin | 0.97446* -0.01751 -0.20838 0.00669 badger | 0.92060* 0.00195 -0.23847 0.09562 rivott | 0.94969* 0.00255 -0.19976 0.05818 seaott | 0.96756* 0.14172 0.03291 0.04265 jaguar | 0.82872* -0.15671 -0.14209 0.26848 cougar | 0.82872* -0.15671 -0.14209 0.26848 furseal | 0.97573* -0.05969 0.03729 0.04300 sealion | 0.97573* -0.05969 0.03729 0.04300 grseal | 0.90758* 0.40037 -0.02060 0.01558 eleseal | 0.85125* -0.00919 0.06816 0.27064 reindeer | 0.21917 0.28451 -0.89172* 0.07585 elk | 0.21917 0.28451 -0.89172* 0.07585 deer | 0.28260 0.34571 -0.87739* 0.03081 moose | 0.28260 0.34571 -0.87739* 0.03081 [* added] Factor Names factor1 factor2 factor3 carnivore rodent/bat deer/bat Alternate Data Input use http://www.gseis.ucla.edu/courses/data/mammal xpose, clear list v1 v1 1. . 2. 2 3. 3 4. 1 5. 1 6. 3 7. 3 8. 3 9. 3 drop in 1 (1 observation deleted) list v1 v1 1. 2 2. 3 3. 1 4. 1 5. 3 6. 3 7. 3 8. 3 factor v1-v32, ipf factor(3) rotate, varimax and so on ...
Multivariate Course Page
Phil Ender, 26nov03