Partial answers to assignment 4 /* code fragment */ scalar n1=rowsof(X1) scalar n2=rowsof(X2) scalar n3=rowsof(X3) mat u1=J(n1,1,1) mat u2=J(n2,1,1) mat u3=J(n3,1,1) /* mv stands for mean vector */ mat mv1 = 1/n1*u1'*X1 mat mv2 = 1/n2*u2'*X2 mat mv3 = 1/n3*u3'*X3 /* mm stands for mean matrix */ mat mm1=u1*mv1 mat mm2=u2*mv2 mat mm3=u3*mv3 /* ds stands for deviation score matrix */ mat ds1=X1-mm1 mat ds2=X2-mm2 mat ds3=X3-mm3 /* sscp stands for the deviation sums of squares and cross products */ mat sscp1=ds1'*ds1 mat sscp2=ds2'*ds2 mat sscp3=ds3'*ds3 /* results */ mv1[1,3] c1 c2 c3 c1 18.118182 6.1909091 8.6818182 mv2[1,3] c1 c2 c3 c1 15.527273 5.5818182 5.1090909 mv3[1,3] c1 c2 c3 c1 15.345455 5.3727273 5.6363636 symmetric sscp1[3,3] c1 c2 c3 c1 152.39636 c2 28.431818 36.089091 c3 -141.76636 -11.071818 236.49636 symmetric sscp2[3,3] c1 c2 c3 c1 43.081818 c2 -12.929545 59.256364 c3 -17.252727 19.641818 64.069091 symmetric sscp3[3,3] c1 c2 c3 c1 98.487273 c2 -8.9513636 30.941818 c3 -48.758182 25.615909 125.80545 /* other results */ symmetric t[3,3] c1 c2 c3 c1 346.8897 c2 20.794848 130.26242 c3 -143.22576 50.897121 508.20061 symmetric w[3,3] c1 c2 c3 c1 293.96545 c2 6.5509091 126.28727 c3 -207.77727 34.185909 426.37091 symmetric b[3,3] c1 c2 c3 c1 52.924242 c2 14.243939 3.9751515 c3 64.551515 16.711212 81.829697 Wilk's Lambda = .52578837 F-ratio = 3.5382298 df1 = 6 df2 = 56 omega-squared.m = .43159482