17 Feb 98 SPSS for Unix, Release 5.0 (IBM RS/6000) Page 1 16:12:22 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. For IBM AIX 3.2. sigma.oac.ucla.edu SPSS ID 265665 -> TITLE CURVILINEAR REGRESSION--POLYNOMIAL EQUATION. -> DATA LIST RECORDS=1 -> /Y 1-2 X 3-4. This command will read 1 records from the command file Variable Rec Start End Format Y 1 1 2 F2.0 X 1 3 4 F2.0 -> COMPUTE X2=X**2. -> COMPUTE X3=X**3. -> BEGIN DATA -> 3 2 -> 4 2 -> 6 2 -> 5 2 -> 7 4 -> 10 4 -> 10 4 -> 13 6 -> 14 6 -> 15 6 -> 16 8 -> 17 8 -> 21 8 -> 1810 -> 1910 -> 2010 -> 1912 -> 2012 -> 2112 -> 2014 -> 2214 -> 2314 -> 2116 -> 2216 -> 2316 -> 2218 -> 2318 -> 2418 -> 2220 -> 2320 -> 2420 -> 2222 -> 2322 -> 2422 -> 2024 -> 2124 -> 2224 -> 1726 -> 1826 -> 1926 -> 1528 -> 1628 -> 1728 -> END DATA. Preceding task required .02 seconds CPU time; .17 seconds elapsed. -> set width=80 . 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 2 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. -> REGRESSION DESCRIPTIVES/ -> VARIABLES=Y,X,X2,X3/ -> STATISTICS=R,ANOVA,COEFF,CHA/ -> DEPENDENT=Y/ENTER X/ -> SCATTERPLOT SIZE (SMALL) (Y,X) (*RESID,X) (*RESID,*PRED)/ -> DEPENDENT=Y/ENTER X/ENTER X2/ENTER X3/ -> SCATTERPLOT SIZE(SMALL) (*RESID,X) (*RESID,*PRED) / -> DEPENDENT=Y/ENTER X X2/ -> SCATTERPLOT SIZE(SMALL) (*RESID,X) (*RESID,*PRED). There are 522,360 bytes of memory available. The largest contiguous area has 519,888 bytes. 1964 bytes of memory required for REGRESSION procedure. 1936 more bytes may be needed for Residuals plots. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 3 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Listwise Deletion of Missing Data Mean Std Devi Label Y 17.698 5.841 X 14.698 8.302 X2 283.349 252.448 X3 6153.674 6964.894 N of Cases = 43 Correlation: Y X X2 X3 Y 1.000 .638 .446 .309 X .638 1.000 .972 .922 X2 .446 .972 1.000 .986 X3 .309 .922 .986 1.000 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 4 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 1 Dependent Variable.. Y Descriptive Statistics are printed on Page 3 Block Number 1. Method: Enter X Variable(s) Entered on Step Number 1.. X Multiple R .63778 R Square .40676 R Square Change .40676 Adjusted R Square .39229 F Change 28.11203 Standard Error 4.55362 Signif F Change .0000 Analysis of Variance DF Sum of Squares Mean Square Regression 1 582.91592 582.91592 Residual 41 850.15385 20.73546 F = 28.11203 Signif F = .0000 ------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X .448718 .084631 .637778 5.302 .0000 (Constant) 11.102564 1.424584 7.794 .0000 End Block Number 1 All requested variables entered. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 5 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 1 Dependent Variable.. Y Residuals Statistics: Min Max Mean Std Dev N *PRED 12.0000 23.6667 17.6977 3.7254 43 *RESID -9.0000 6.3077 .0000 4.4991 43 *ZPRED -1.5294 1.6022 .0000 1.0000 43 *ZRESID -1.9764 1.3852 .0000 .9880 43 Total Cases = 43 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 6 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. Standardized Scatterplot Across - X Down - Y Out ++-----+-----+-----+-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | | . 1.0 | | : 2.0 1 + . .: :: + | . .. :. .. : | | ::. .. | 0 + . . : . + | .. : | | : | -1 + + | : | | . | -2 + . + | : | | . | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out Standardized Scatterplot Across - X Down - *RESID Out ++-----+-----+-----+-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | | . 1.0 | . . | : 2.0 1 + ... .: . + | . ::. :. .. | | .. .: | 0 + . . + | . : | | : . | -1 + . + | .. . . | | : . | -2 + . . + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 7 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. Standardized Scatterplot Across - *PRED Down - *RESID Out ++-----+-----+-----+-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | | . 1.0 | . . | : 2.0 1 + ... .: . + | . ::. :. .. | | .. .: | 0 + . . + | . : | | : . | -1 + . + | .. . . | | : . | -2 + . . + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 8 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 2 Dependent Variable.. Y Descriptive Statistics are printed on Page 3 Block Number 1. Method: Enter X Variable(s) Entered on Step Number 1.. X Multiple R .63778 R Square .40676 R Square Change .40676 Adjusted R Square .39229 F Change 28.11203 Standard Error 4.55362 Signif F Change .0000 Analysis of Variance DF Sum of Squares Mean Square Regression 1 582.91592 582.91592 Residual 41 850.15385 20.73546 F = 28.11203 Signif F = .0000 ------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X .448718 .084631 .637778 5.302 .0000 (Constant) 11.102564 1.424584 7.794 .0000 End Block Number 1 All requested variables entered. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 9 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 2 Dependent Variable.. Y Block Number 2. Method: Enter X2 Variable(s) Entered on Step Number 2.. X2 Multiple R .97402 R Square .94871 R Square Change .54195 Adjusted R Square .94615 F Change 422.66795 Standard Error 1.35555 Signif F Change .0000 Analysis of Variance DF Sum of Squares Mean Square Regression 2 1359.56964 679.78482 Residual 40 73.50013 1.83750 F = 369.95027 Signif F = .0000 ------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X 2.576439 .106516 3.661978 24.188 .0000 X2 -.072019 .003503 -3.112514 -20.559 .0000 (Constant) .236528 .677634 .349 .7289 End Block Number 2 All requested variables entered. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 10 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 2 Dependent Variable.. Y Block Number 3. Method: Enter X3 Variable(s) Entered on Step Number 3.. X3 Multiple R .97457 R Square .94980 R Square Change .00109 Adjusted R Square .94593 F Change .84287 Standard Error 1.35822 Signif F Change .3642 Analysis of Variance DF Sum of Squares Mean Square Regression 3 1361.12452 453.70817 Residual 39 71.94524 1.84475 F = 245.94564 Signif F = .0000 ------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X 2.829993 .296083 4.022363 9.558 .0000 X2 -.092834 .022942 -4.012083 -4.046 .0002 X3 4.67108E-04 5.0879E-04 .556958 .918 .3642 (Constant) -.466721 1.023599 -.456 .6509 End Block Number 3 All requested variables entered. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 11 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 2 Dependent Variable.. Y Residuals Statistics: Min Max Mean Std Dev N *PRED 4.8257 23.1192 17.6977 5.6928 43 *RESID -2.3978 4.5290 .0000 1.3088 43 *ZPRED -2.2611 .9523 .0000 1.0000 43 *ZRESID -1.7654 3.3345 .0000 .9636 43 Total Cases = 43 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 12 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. Standardized Scatterplot Across - X Down - *RESID Out ++-----+----- . ---+-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | . | . 1.0 | . | : 2.0 1 + . .. . + | . . . . . | | : . . .. | 0 + . .. .. . + | .. . .. . | | . .. .. . | -1 + . . + | . . . | | . . | -2 + + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out Standardized Scatterplot Across - *PRED Down - *RESID Out ++-----+-----+--- . -----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | . | . 1.0 | . | : 2.0 1 + . ... + | . . . .. | | : . . . . | 0 + . . .. : + | . .. . . . | | . . . .: | -1 + . . + | . . . | | . . | -2 + + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 13 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 3 Dependent Variable.. Y Descriptive Statistics are printed on Page 3 Block Number 1. Method: Enter X X2 Variable(s) Entered on Step Number 1.. X2 2.. X Multiple R .97402 R Square .94871 R Square Change .94871 Adjusted R Square .94615 F Change 369.95027 Standard Error 1.35555 Signif F Change .0000 Analysis of Variance DF Sum of Squares Mean Square Regression 2 1359.56964 679.78482 Residual 40 73.50013 1.83750 F = 369.95027 Signif F = .0000 ------------------ Variables in the Equation ------------------ Variable B SE B Beta T Sig T X2 -.072019 .003503 -3.112514 -20.559 .0000 X 2.576439 .106516 3.661978 24.188 .0000 (Constant) .236528 .677634 .349 .7289 End Block Number 1 All requested variables entered. 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 14 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 3 Dependent Variable.. Y Residuals Statistics: Min Max Mean Std Dev N *PRED 5.1013 23.2783 17.6977 5.6895 43 *RESID -2.3900 4.7612 .0000 1.3229 43 *ZPRED -2.2140 .9809 .0000 1.0000 43 *ZRESID -1.7631 3.5124 .0000 .9759 43 Total Cases = 43 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 15 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. Standardized Scatterplot Across - X Down - *RESID Out ++-----+----- . ---+-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | | . 1.0 | . . | : 2.0 1 + . . + | . .. . . .. . | | : .. | 0 + . . ... . .. . + | . . .. | | . .. . . . | -1 + . . + | . . | | .. . | -2 + + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out Standardized Scatterplot Across - *PRED Down - *RESID Out ++-----+-----+-- . +-----+-----+-----++ 3 + + Symbols: | | | | Max N 2 + + | | . 1.0 | . . | : 2.0 1 + . . + | . . : :: | | : . . | 0 + . . . . . :: + | . . . . | | . . . . : | -1 + . . + | . . | | . . . | -2 + + | | | | -3 + + Out ++-----+-----+-----+-----+-----+-----++ -3 -2 -1 0 1 2 3 Out 17 Feb 98 CURVILINEAR REGRESSION--POLYNOMIAL EQUATION Page 16 16:12:30 sigma.oac.ucla.edu IBM RS/6000 IBM AIX 3.2. Preceding task required .04 seconds CPU time; .10 seconds elapsed. --========================_48736590==_ Content-Type: text/plain; name="curve.sps"; charset="us-ascii" Content-Disposition: attachment; filename="curve.sps" TITLE CURVILINEAR REGRESSION--POLYNOMIAL EQUATION. DATA LIST RECORDS=1 /Y 1-2 X 3-4. COMPUTE X2=X**2. COMPUTE X3=X**3. BEGIN DATA 3 2 4 2 6 2 5 2 7 4 10 4 10 4 13 6 14 6 15 6 16 8 17 8 21 8 1810 1910 2010 1912 2012 2112 2014 2214 2314 2116 2216 2316 2218 2318 2418 2220 2320 2420 2222 2322 2422 2024 2124 2224 1726 1826 1926 1528 1628 1728 END DATA. set width=80 . REGRESSION DESCRIPTIVES/ VARIABLES=Y,X,X2,X3/ STATISTICS=R,ANOVA,COEFF,CHA/ DEPENDENT=Y/ENTER X/ SCATTERPLOT SIZE (SMALL) (Y,X) (*RESID,X) (*RESID,*PRED)/ DEPENDENT=Y/ENTER X/ENTER X2/ENTER X3/ SCATTERPLOT SIZE(SMALL) (*RESID,X) (*RESID,*PRED) / DEPENDENT=Y/ENTER X X2/ SCATTERPLOT SIZE(SMALL) (*RESID,X) (*RESID,*PRED).