A General Statement
Power
Truth | ||
Experimenter's Decision | H0 is true | H0 is false |
Fail to reject H0 | Correct Decision 1 - α | Type II Error β |
Reject H0 | Type I Error α | Correct Decision 1 - β Power |
Factors that Effect Power
Effect Size
The effect size coefficient, f, expresses the differences among the group means in terms of standard units.
f = .10 -- small effect size f = .25 -- medium effectg size f = .40 -- large effect sizeAn estimate of the effect size, f, can be obtained using ω2
use http://www.philender.com/courses/data/cr4new, clear anova y a Number of obs = 32 R-squared = 0.4455 Root MSE = 1.476 Adj R-squared = 0.3860 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 49.00 3 16.3333333 7.50 0.0008 | a | 49.00 3 16.3333333 7.50 0.0008 | Residual | 61.00 28 2.17857143 -----------+---------------------------------------------------- Total | 110.00 31 3.5483871 effectsize a anova effect size for a with dep var = y total variance accounted for omega2 = .37854187 eta2 = .44545455 Cohen's f = .78046067 partial variance accounted for partial omega2 = .37854187 partial eta2 = .44545455 use http://www.philender.com/courses/data/hsb2 anova write prog Number of obs = 200 R-squared = 0.1776 Root MSE = 8.63918 Adj R-squared = 0.1693 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 3175.69786 2 1587.84893 21.27 0.0000 | prog | 3175.69786 2 1587.84893 21.27 0.0000 | Residual | 14703.1771 197 74.635417 -----------+---------------------------------------------------- Total | 17878.875 199 89.843593 effectsize prog anova effect size for prog with dep var = write total variance accounted for omega2 = .16857021 eta2 = .17762291 Cohen's f = .45027478 partial variance accounted for partial omega2 = .16857021 partial eta2 = .17762291Practicalities
Using Pearson-Hartley Power Curves
Example
Example | 1 | 2 |
alpha | .01 | .05 |
power | .80 | .80 |
ν1 | 3 | 3 |
φ | 2.2 | 2.2 |
Read ν2 | 30 | 7 |
n per cell* | 8 | 3 |
Power Curve for ν1 = 3
Using Monte Carlo Simulation
Next, we will do a Monte Carlo power simulation using the simpower command from ATS. Here is how to get the program.
net from http://www.ats.ucla.edu/stat/stata/ado/analysis/
net install simpower
Let's try simulating a three group anova.
simpower, groups(3) n(5 5 5) mu(10 12 14) s(3 3 3) Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 5 MU1 = 10 S1 = 3 N2 = 5 MU2 = 12 S2 = 3 N3 = 5 MU3 = 14 S3 = 3 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.5260 0.0750 0.4680 0.0500 0.3820 0.0250 0.2600 0.0100 0.1440 simpower, groups(3) n(10 10 10) mu(10 12 14) s(3 3 3) Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 10 MU1 = 10 S1 = 3 N2 = 10 MU2 = 12 S2 = 3 N3 = 10 MU3 = 14 S3 = 3 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.8330 0.0750 0.7800 0.0500 0.7110 0.0250 0.5900 0.0100 0.4440 simpower, groups(3) n(15 15 15) mu(10 12 14) s(3 3 3) Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 15 MU1 = 10 S1 = 3 N2 = 15 MU2 = 12 S2 = 3 N3 = 15 MU3 = 14 S3 = 3 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.9400 0.0750 0.9280 0.0500 0.9050 0.0250 0.8350 0.0100 0.7160
Next, we will use simpower beginning with a real anova.
use http://www.gseis.ucla.edu/courses/data/crf33 anova y b Number of obs = 45 R-squared = 0.2957 Root MSE = 9.35626 Adj R-squared = 0.2621 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 1543.33333 2 771.666667 8.82 0.0006 | b | 1543.33333 2 771.666667 8.82 0.0006 | Residual | 3676.66667 42 87.5396825 -----------+---------------------------------------------------- Total | 5220.00 44 118.636364 simpower y b Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 15 MU1 = 27.666666 S1 = 8.7722502 N2 = 15 MU2 = 35.333332 S2 = 7.8437114 N3 = 15 MU3 = 42 S3 = 11.141941 Results of Standard ANOVA ---------------------------------------------------------------------- Dependent Variable is y and Independent Variable is b F( 2, 42.00) = 8.815, p= 0.0006 ---------------------------------------------------------------------- 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.9730 0.0750 0.9580 0.0500 0.9350 0.0250 0.8840 0.0100 0.8260 simpower, gr(3) n(8 8 8) mu(27 35 42) s(8 7 11) Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 8 MU1 = 27 S1 = 8 N2 = 8 MU2 = 35 S2 = 7 N3 = 8 MU3 = 42 S3 = 11 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.8800 0.0750 0.8540 0.0500 0.8040 0.0250 0.7100 0.0100 0.5660 simpower y a Sample Sizes, Means and Standard Deviations ------------------------------------------- N1 = 15 MU1 = 35.333332 S1 = 8.1474504 N2 = 15 MU2 = 32.333332 S2 = 7.8072004 N3 = 15 MU3 = 37.333332 S3 = 15.229983 Results of Standard ANOVA ---------------------------------------------------------------------- Dependent Variable is y and Independent Variable is a F( 2, 42.00) = 0.793, p= 0.4590 ---------------------------------------------------------------------- 1000 simulated ANOVA F tests ------------------------------ Alpha Simulated Level Power ------------------------------ 0.1000 0.2730 0.0750 0.2400 0.0500 0.1930 0.0250 0.1240 0.0100 0.0690
Linear Statistical Models Course
Phil Ender, 17sep10, 10apr06, 15mar02, 12feb98