The t-test for dependent samples can be used to examine data from within-subjects designs when two observations are made on each subject. The dependent t-test is sometimes call the t-test for repeated measures because it can be used in situations involving collectiong two measures on each subject. The same formula and logic applies to studies involving siblings or research on husbands and wives in the same family.
Hypotheses
Assumptions
The Trick to the Dependent t-test
Formulas
Example
Consider these hypothetical scores for husbands and wives regarding their attitudes towards bilingual education.
Wives | Husbands | d |
---|---|---|
107 | 102 | 5 |
120 | 109 | 11 |
100 | 111 | -11 |
121 | 117 | 4 |
116 | 121 | -5 |
109 | 103 | 6 |
120 | 111 | 9 |
115 | 110 | 5 |
117 | 109 | 8 |
123 | 114 | 9 |
108 | 109 | -1 |
121 | 113 | 8 |
mean | 4 |
Stata Analysis of Example
input wife husb 107 102 120 109 100 111 121 117 116 121 109 103 120 111 115 110 117 109 123 114 108 109 121 113 end generate diff = wife-husb ttest wife=husb Paired t test ------------------------------------------------------------------------------ Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- wife | 12 114.75 2.067516 7.162085 110.1994 119.3006 husb | 12 110.75 1.523179 5.276449 107.3975 114.1025 ---------+-------------------------------------------------------------------- diff | 12 4 1.882938 6.522688 -.144318 8.144318 ------------------------------------------------------------------------------ Ho: mean(wife - husb) = mean(diff) = 0 Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0 t = 2.1243 t = 2.1243 t = 2.1243 P < t = 0.9714 P > |t| = 0.0571 P > t = 0.0286 ttest diff=0 One-sample t test ------------------------------------------------------------------------------ Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- diff | 12 4 1.882938 6.522688 -.144318 8.144318 ------------------------------------------------------------------------------ Degrees of freedom: 11 Ho: mean(diff) = 0 Ha: mean < 0 Ha: mean != 0 Ha: mean > 0 t = 2.1243 t = 2.1243 t = 2.1243 P < t = 0.9714 P > |t| = 0.0571 P > t = 0.0286 display 2.1242^2 4.5122256Using ANOVA
input pairid a y 1 1 107 1 2 102 2 1 120 2 2 109 3 1 100 3 2 111 4 1 121 4 2 117 5 1 116 5 2 121 6 1 109 6 2 103 7 1 120 7 2 111 8 1 115 8 2 110 9 1 117 9 2 109 10 1 123 10 2 114 11 1 108 11 2 109 12 1 121 12 2 113 end anova y a pairid Number of obs = 24 R-squared = 0.7579 Root MSE = 4.61224 Adj R-squared = 0.4938 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 732.5 12 61.0416667 2.87 0.0456 | a | 96 1 96 4.51 0.0571 pairid | 636.5 11 57.8636364 2.72 0.0558 | Residual | 234 11 21.2727273 -----------+---------------------------------------------------- Total | 966.5 23 42.0217391 display sqrt(e(F_1)) 2.12434 regress y i.a i.pairid Source | SS df MS Number of obs = 24 -------------+------------------------------ F( 12, 11) = 2.87 Model | 732.5 12 61.0416667 Prob > F = 0.0456 Residual | 234 11 21.2727273 R-squared = 0.7579 -------------+------------------------------ Adj R-squared = 0.4938 Total | 966.5 23 42.0217391 Root MSE = 4.6122 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- 2.a | -4 1.882938 -2.12 0.057 -8.144318 .144318 | pairid | 2 | 10 4.612237 2.17 0.053 -.1514645 20.15146 3 | 1 4.612237 0.22 0.832 -9.151465 11.15146 4 | 14.5 4.612237 3.14 0.009 4.348535 24.65146 5 | 14 4.612237 3.04 0.011 3.848535 24.15146 6 | 1.5 4.612237 0.33 0.751 -8.651465 11.65146 7 | 11 4.612237 2.38 0.036 .8485355 21.15146 8 | 8 4.612237 1.73 0.111 -2.151465 18.15146 9 | 8.5 4.612237 1.84 0.092 -1.651465 18.65146 10 | 14 4.612237 3.04 0.011 3.848535 24.15146 11 | 4 4.612237 0.87 0.404 -6.151465 14.15146 12 | 12.5 4.612237 2.71 0.020 2.348535 22.65146 | _cons | 106.5 3.394514 31.37 0.000 99.02872 113.9713 ------------------------------------------------------------------------------
Linear Statistical Models Course
Phil Ender, 25apr06, 12Feb98