This unit reviews the two-group t-test for independent groups.
t-test Hypotheses
2-tail - H0: μ1 = μ2 H1: μ1 <> μ2
1-tail - H0: μ1 <= μ2 H1: μ1 > μ2
1-tail - H0: μ1 >= μ2 H1: μ1 < μ2
t-test Assumptions
t-test Formulas
Example
Consider an example using the hsb2 dataset with write as the outcome variable and schtyp as the two-group categorical variable.
use http://www.philender.com/courses/data/hsbdemo, clear ttest write, by(schtyp) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- public | 168 52.25 .7549735 9.785575 50.75948 53.74052 private | 32 55.53125 1.269195 7.17965 52.94271 58.11979 ---------+-------------------------------------------------------------------- combined | 200 52.775 .6702372 9.478586 51.45332 54.09668 ---------+-------------------------------------------------------------------- diff | -3.28125 1.817938 -6.866256 .303756 ------------------------------------------------------------------------------ Degrees of freedom: 198 Ho: mean(public) - mean(private) = diff = 0 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0 t = -1.8049 t = -1.8049 t = -1.8049 P < t = 0.0363 P > |t| = 0.0726 P > t = 0.9637 anova write schtyp Number of obs = 200 R-squared = 0.0162 Root MSE = 9.42527 Adj R-squared = 0.0112 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 289.40625 1 289.40625 3.26 0.0726 | schtyp | 289.40625 1 289.40625 3.26 0.0726 | Residual | 17589.4687 198 88.8357008 -----------+---------------------------------------------------- Total | 17878.875 199 89.843593 regress write i.schtyp Source | SS df MS Number of obs = 200 -------------+------------------------------ F( 1, 198) = 3.26 Model | 289.40625 1 289.40625 Prob > F = 0.0726 Residual | 17589.4688 198 88.8357008 R-squared = 0.0162 -------------+------------------------------ Adj R-squared = 0.0112 Total | 17878.875 199 89.843593 Root MSE = 9.4253 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- 2.schtyp | 3.28125 1.817938 1.80 0.073 -.3037561 6.866256 _cons | 52.25 .7271753 71.85 0.000 50.816 53.684 ------------------------------------------------------------------------------ test 2.schtyp ( 1) 2.schtyp = 0 F( 1, 198) = 3.26 Prob > F = 0.0726
There is also a version of the two-group independent t-test without the assumption that the population variances are equal.
ttest write, by(schtyp) unequal Two-sample t test with unequal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- public | 168 52.25 .7549735 9.785575 50.75948 53.74052 private | 32 55.53125 1.269195 7.17965 52.94271 58.11979 ---------+-------------------------------------------------------------------- combined | 200 52.775 .6702372 9.478586 51.45332 54.09668 ---------+-------------------------------------------------------------------- diff | -3.28125 1.476767 -6.240124 -.3223763 ------------------------------------------------------------------------------ Satterthwaite's degrees of freedom: 55.5288 Ho: mean(public) - mean(private) = diff = 0 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0 t = -2.2219 t = -2.2219 t = -2.2219 P < t = 0.0152 P > |t| = 0.0304 P > t = 0.9848 regress write i.schtyp, robust Linear regression Number of obs = 200 F( 1, 198) = 5.01 Prob > F = 0.0263 R-squared = 0.0162 Root MSE = 9.4253 ------------------------------------------------------------------------------ | Robust write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- 2.schtyp | 3.28125 1.465809 2.24 0.026 .39065 6.17185 _cons | 52.25 .7565153 69.07 0.000 50.75814 53.74186 ------------------------------------------------------------------------------
Linear Statistical Models Course
Phil Ender, 17sep10, 2apr02; 12feb98