Example 1
set matsize 100 use http://www.gseis.ucla.edu/courses/data/honors describe Contains data from http://www.philender.com/courses/data/honors.dta, clear obs: 200 vars: 7 10 Feb 2001 16:27 size: 6,400 (99.8% of memory free) ------------------------------------------------------------------------------- 1. id float %9.0g 2. female float %9.0g fl 3. ses float %9.0g sl 4. lang float %9.0g language test score 5. math float %9.0g math score 6. science float %9.0g science score 7. honors float %9.0g ------------------------------------------------------------------------------- summarize Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- id | 200 100.5 57.87918 1 200 female | 200 .545 .4992205 0 1 ses | 200 2.055 .7242914 1 3 lang | 200 52.23 10.25294 28 76 math | 200 52.645 9.368448 33 75 science | 200 51.85 9.900891 26 74 honors | 200 .265 .4424407 0 1 tab1 honors female -> tabulation of honors honors | Freq. Percent Cum. ------------+----------------------------------- 0 | 147 73.50 73.50 1 | 53 26.50 100.00 ------------+----------------------------------- Total | 200 100.00 -> tabulation of female female | Freq. Percent Cum. ------------+----------------------------------- male | 91 45.50 45.50 female | 109 54.50 100.00 ------------+----------------------------------- Total | 200 100.00 tabulate ses, gen(ses) ses | Freq. Percent Cum. ------------+----------------------------------- low | 47 23.50 23.50 middle | 95 47.50 71.00 high | 58 29.00 100.00 ------------+----------------------------------- Total | 200 100.00 logit honors lang math science female ses1 ses2 Logit estimates Number of obs = 200 LR chi2(6) = 89.49 Prob > chi2 = 0.0000 Log likelihood = -70.897289 Pseudo R2 = 0.3869 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lang | .0595035 .0290193 2.050 0.040 .0026266 .1163803 math | .1157581 .0355475 3.256 0.001 .0460864 .1854299 science | .0484799 .0332288 1.459 0.145 -.0166474 .1136072 female | 1.322503 .4762386 2.777 0.005 .3890923 2.255913 ses1 | .0068769 .6003709 0.011 0.991 -1.169828 1.183582 ses2 | -1.001258 .4860905 -2.060 0.039 -1.953978 -.0485382 _cons | -13.68829 2.194273 -6.238 0.000 -17.98899 -9.387597 ------------------------------------------------------------------------------ logit honors lang math female ses1 ses2 Logit estimates Number of obs = 200 LR chi2(5) = 87.30 Prob > chi2 = 0.0000 Log likelihood = -71.994756 Pseudo R2 = 0.3774 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lang | .0687277 .0287044 2.394 0.017 .0124681 .1249873 math | .1358904 .0336874 4.034 0.000 .0698642 .2019166 female | 1.145726 .4513589 2.538 0.011 .2610792 2.030374 ses1 | -.0541296 .5945439 -0.091 0.927 -1.219414 1.111155 ses2 | -1.094532 .4833959 -2.264 0.024 -2.04197 -.1470932 _cons | -12.49919 1.926421 -6.488 0.000 -16.27491 -8.723475 ------------------------------------------------------------------------------ test ses1 ses2 ( 1) ses1 = 0.0 ( 2) ses2 = 0.0 chi2( 2) = 6.13 Prob > chi2 = 0.0466 estimates store M1 logit honors lang math female, nolog Logit estimates Number of obs = 200 LR chi2(3) = 80.87 Prob > chi2 = 0.0000 Log likelihood = -75.209827 Pseudo R2 = 0.3496 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lang | .0752424 .027577 2.73 0.006 .0211924 .1292924 math | .1317117 .0324607 4.06 0.000 .06809 .1953335 female | 1.154801 .4340856 2.66 0.008 .304009 2.005593 _cons | -13.12749 1.850769 -7.09 0.000 -16.75493 -9.50005 ------------------------------------------------------------------------------ lrtest M1 likelihood-ratio test LR chi2(2) = 6.43 (Assumption: . nested in M1) Prob > chi2 = 0.0402 for var lang math female: generate s1X = ses1*X for var lang math female: generate s2X = ses2*X logit honors lang math female ses1 ses2 s1lang s2lang s1math s2math s1female s2female Logit estimates Number of obs = 200 LR chi2(11) = 92.88 Prob > chi2 = 0.0000 Log likelihood = -69.202134 Pseudo R2 = 0.4016 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lang | .0342401 .0443933 0.771 0.441 -.0527693 .1212494 math | .2202793 .0750803 2.934 0.003 .0731245 .367434 female | .2074981 .7108037 0.292 0.770 -1.185652 1.600648 ses1 | -1.557294 6.22085 -0.250 0.802 -13.74993 10.63535 ses2 | 2.01131 4.949326 0.406 0.684 -7.689191 11.71181 s1lang | .1038843 .0901062 1.153 0.249 -.0727206 .2804892 s2lang | .0442549 .0648504 0.682 0.495 -.0828497 .1713594 s1math | -.0982415 .102635 -0.957 0.338 -.2994024 .1029194 s2math | -.1102176 .0908463 -1.213 0.225 -.2882731 .067838 s1female | 2.194595 1.544575 1.421 0.155 -.8327167 5.221907 s2female | 1.340724 1.047049 1.280 0.200 -.7114537 3.392902 _cons | -14.91288 3.908548 -3.815 0.000 -22.57349 -7.252265 ------------------------------------------------------------------------------ test s1lang s2lang s1math s2math s1female s2female ( 1) s1lang = 0.0 ( 2) s2lang = 0.0 ( 3) s1math = 0.0 ( 4) s2math = 0.0 ( 5) s1female = 0.0 ( 6) s2female = 0.0 chi2( 6) = 5.04 Prob > chi2 = 0.5390 logit honors lang math female ses1 ses2 Logit estimates Number of obs = 200 LR chi2(5) = 87.30 Prob > chi2 = 0.0000 Log likelihood = -71.994756 Pseudo R2 = 0.3774 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lang | .0687277 .0287044 2.394 0.017 .0124681 .1249873 math | .1358904 .0336874 4.034 0.000 .0698642 .2019166 female | 1.145726 .4513589 2.538 0.011 .2610792 2.030374 ses1 | -.0541296 .5945439 -0.091 0.927 -1.219414 1.111155 ses2 | -1.094532 .4833959 -2.264 0.024 -2.04197 -.1470932 _cons | -12.49919 1.926421 -6.488 0.000 -16.27491 -8.723475 ------------------------------------------------------------------------------ logit, or Logit estimates Number of obs = 200 LR chi2(5) = 87.30 Prob > chi2 = 0.0000 Log likelihood = -71.994756 Pseudo R2 = 0.3774 ------------------------------------------------------------------------------ honors | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lang | 1.071145 .0307466 2.394 0.017 1.012546 1.133134 math | 1.145556 .0385909 4.034 0.000 1.072363 1.223746 female | 3.144725 1.4194 2.538 0.011 1.29833 7.616932 ses1 | .9473093 .563217 -0.091 0.927 .2954031 3.037865 ses2 | .3346963 .1617908 -2.264 0.024 .1297728 .8632135 ------------------------------------------------------------------------------ listcoef /* Long & Freese - findit spostado */ logit (N=200): Factor Change in Odds Odds of: 1 vs 0 ------------------------------------------------------------------ honors | b z P>|z| e^b e^bStdX SDofX ---------+-------------------------------------------------------- lang | 0.06873 2.394 0.017 1.0711 2.0232 10.2529 math | 0.13589 4.034 0.000 1.1456 3.5718 9.3684 female | 1.14573 2.538 0.011 3.1447 1.7718 0.4992 ses1 | -0.05413 -0.091 0.927 0.9473 0.9773 0.4251 ses2 | -1.09453 -2.264 0.024 0.3347 0.5781 0.5006 ------------------------------------------------------------------ listcoef, percent /* Long & Freese */ logit (N=200): Percentage Change in Odds Odds of: 1 vs 0 ---------------------------------------------------------------------- honors | b z P>|z| % %StdX SDofX -------------+-------------------------------------------------------- lang | 0.06873 2.394 0.017 7.1 102.3 10.2529 math | 0.13589 4.034 0.000 14.6 257.2 9.3684 female | 1.14573 2.538 0.011 214.5 77.2 0.4992 ses1 | -0.05413 -0.091 0.927 -5.3 -2.3 0.4251 ses2 | -1.09453 -2.264 0.024 -66.5 -42.2 0.5006 ---------------------------------------------------------------------- fitstat /* Long & Freese */ Measures of Fit for logit of honors Log-Lik Intercept Only: -115.644 Log-Lik Full Model: -71.995 D(194): 143.990 LR(5): 87.299 Prob > LR: 0.000 McFadden's R2: 0.377 McFadden's Adj R2: 0.326 Maximum Likelihood R2: 0.354 Cragg & Uhler's R2: 0.516 McKelvey and Zavoina's R2: 0.549 Efron's R2: 0.404 Variance of y*: 7.296 Variance of error: 3.290 Count R2: 0.830 Adj Count R2: 0.358 AIC: 0.780 AIC*n: 155.990 BIC: -883.884 BIC': -60.808 lfit Logistic model for honors, goodness-of-fit test number of observations = 200 number of covariate patterns = 189 Pearson chi2(183) = 166.48 Prob > chi2 = 0.8040 lfit, group(10) Logistic model for honors, goodness-of-fit test (Table collapsed on quantiles of estimated probabilities) number of observations = 200 number of groups = 10 Hosmer-Lemeshow chi2(8) = 12.91 Prob > chi2 = 0.1151 lstat Logistic model for honors -------- True -------- Classified | D ~D | Total -----------+--------------------------+----------- + | 31 12 | 43 - | 22 135 | 157 -----------+--------------------------+----------- Total | 53 147 | 200 Classified + if predicted Pr(D) >= .5 True D defined as honors ~= 0 -------------------------------------------------- Sensitivity Pr( +| D) 58.49% Specificity Pr( -|~D) 91.84% Positive predictive value Pr( D| +) 72.09% Negative predictive value Pr(~D| -) 85.99% -------------------------------------------------- False + rate for true ~D Pr( +|~D) 8.16% False - rate for true D Pr( -| D) 41.51% False + rate for classified + Pr(~D| +) 27.91% False - rate for classified - Pr( D| -) 14.01% -------------------------------------------------- Correctly classified 83.00% -------------------------------------------------- lroc lsens prchange /* Long & Freese */ logit: Changes in Predicted Probabilities for honors min->max 0->1 -+1/2 -+sd/2 MargEfct lang 0.4579 0.0004 0.0092 0.0947 0.0092 math 0.7851 0.0000 0.0182 0.1725 0.0182 female 0.1498 0.1498 0.1549 0.0768 0.1534 ses1 -0.0072 -0.0072 -0.0072 -0.0031 -0.0072 ses2 -0.1453 -0.1453 -0.1479 -0.0735 -0.1465 0 1 Pr(y|x) 0.8407 0.1593 lang math female ses1 ses2 x= 52.23 52.645 .545 .235 .475 sd(x)= 10.2529 9.36845 .49922 .425063 .500628 prtab math /* Long & Freese */ logit: Predicted probabilities of positive outcome for honors ---------------------- math | score | Prediction ----------+----------- 33 | 0.0130 35 | 0.0169 37 | 0.0221 38 | 0.0252 39 | 0.0288 40 | 0.0329 41 | 0.0375 42 | 0.0427 43 | 0.0486 44 | 0.0553 45 | 0.0628 46 | 0.0713 47 | 0.0808 48 | 0.0915 49 | 0.1035 50 | 0.1168 51 | 0.1315 52 | 0.1479 53 | 0.1658 54 | 0.1855 55 | 0.2069 56 | 0.2301 57 | 0.2550 58 | 0.2817 59 | 0.3100 60 | 0.3398 61 | 0.3709 62 | 0.4031 63 | 0.4362 64 | 0.4698 65 | 0.5038 66 | 0.5377 67 | 0.5712 68 | 0.6042 69 | 0.6362 70 | 0.6670 71 | 0.6965 72 | 0.7244 73 | 0.7507 75 | 0.7980 ---------------------- lang math female ses1 ses2 x= 52.23 52.645 .545 .235 .475 prtab female /* Long & Freese */ logit: Predicted probabilities of positive outcome for honors ---------------------- female | Prediction ----------+----------- male | 0.0921 female | 0.2419 ---------------------- lang math female ses1 ses2 x= 52.23 52.645 .545 .235 .475 prtab female, x(ses1=0 ses2=0) /* Long & Freese */ logit: Predicted probabilities of positive outcome for honors ---------------------- female | Prediction ----------+----------- male | 0.1473 female | 0.3521 ---------------------- lang math female ses1 ses2 x= 52.23 52.645 .545 0 0 prtab math female /* Long & Freese */ logit: Predicted probabilities of positive outcome for honors -------------------------- math | female score | male female ----------+--------------- 33 | 0.0070 0.0216 35 | 0.0091 0.0282 37 | 0.0120 0.0367 38 | 0.0137 0.0418 39 | 0.0156 0.0476 40 | 0.0179 0.0541 41 | 0.0204 0.0615 42 | 0.0233 0.0698 43 | 0.0266 0.0792 44 | 0.0304 0.0897 45 | 0.0347 0.1014 46 | 0.0395 0.1145 47 | 0.0450 0.1290 48 | 0.0512 0.1451 49 | 0.0582 0.1628 50 | 0.0661 0.1821 51 | 0.0750 0.2033 52 | 0.0850 0.2262 53 | 0.0962 0.2508 54 | 0.1087 0.2772 55 | 0.1226 0.3052 56 | 0.1380 0.3348 57 | 0.1549 0.3657 58 | 0.1736 0.3978 59 | 0.1939 0.4307 60 | 0.2161 0.4643 61 | 0.2400 0.4982 62 | 0.2656 0.5321 63 | 0.2930 0.5658 64 | 0.3219 0.5988 65 | 0.3522 0.6310 66 | 0.3838 0.6620 67 | 0.4164 0.6917 68 | 0.4498 0.7199 69 | 0.4836 0.7465 70 | 0.5175 0.7713 71 | 0.5513 0.7944 72 | 0.5847 0.8157 73 | 0.6172 0.8353 75 | 0.6791 0.8694 -------------------------- lang math female ses1 ses2 x= 52.23 52.645 .545 .235 .475 adjust , by(female) pr ------------------------------------------------------------------------------------------------------------------- Dependent variable: honors Command: logit Variables left as is: lang, math, ses1, ses2 ------------------------------------------------------------------------------------------------------------------- ---------------------- female | pr ----------+----------- male | .095504 female | .235793 ---------------------- Key: pr = Probability adjust , by(math female) pr ------------------------------------------------------------------------------------------------------------------- Dependent variable: honors Command: logit Variables left as is: lang, ses1, ses2 ------------------------------------------------------------------------------------------------------------------- ---------------------------- math | female score | male female ----------+----------------- 33 | .00505 35 | .010903 37 | .007063 38 | .009424 .012157 39 | .010295 .024776 40 | .00719 .032006 41 | .010836 .040107 42 | .012414 .038243 43 | .023918 .049328 44 | .02681 .085487 45 | .010555 .091812 46 | .010719 .100966 47 | .086323 .040134 48 | .167292 .066036 49 | .071675 .154055 50 | .086665 .183269 51 | .065887 .188285 52 | .051212 .131086 53 | .206648 54 | .11679 .178969 55 | .143084 .208708 56 | .446248 .446734 57 | .123998 .589668 58 | .337277 .447585 59 | .282453 60 | .194704 .604963 61 | .207849 .678166 62 | .402635 .837825 63 | .378684 .575784 64 | .668068 .824284 65 | .870542 66 | .485724 .662899 67 | .889047 68 | .770061 69 | .932625 70 | .595297 71 | .789501 .932428 72 | .906185 73 | .793049 75 | .750208 ---------------------------- Key: Probability adjust lang, by(math female) pr ------------------------------------------------------------------------------------------------------------------- Dependent variable: honors Command: logit Variables left as is: ses1, ses2 Covariate set to mean: lang = 52.23 ------------------------------------------------------------------------------------------------------------------- ---------------------------- math | female score | male female ----------+----------------- 33 | .012444 35 | .005231 37 | .02124 38 | .023074 .024257 39 | .019899 .04572 40 | .010267 .061276 41 | .016532 .075401 42 | .02239 .076264 43 | .042274 .097861 44 | .049387 .137197 45 | .020055 .124614 46 | .022908 .138586 47 | .072443 .077881 48 | .082121 .088217 49 | .062364 .143865 50 | .105924 .17798 51 | .066866 .22859 52 | .050318 .177709 53 | .204419 54 | .141706 .213936 55 | .073775 .247733 56 | .214219 .373134 57 | .130849 .427589 58 | .19897 .347533 59 | .1875 60 | .135797 .50168 61 | .237308 .535593 62 | .262773 .659572 63 | .324902 .426229 64 | .44706 .71035 65 | .74097 66 | .380355 .65874 67 | .792628 68 | .582004 69 | .833775 70 | .379482 71 | .502247 .868116 72 | .834707 73 | .478994 75 | .546789 ---------------------------- Key: Probability
Example 2
use http://www.philender.com/courses/data/api2000, clear describe Contains data from api2000.dta obs: 250 vars: 8 10 Feb 2001 14:58 size: 5,500 (99.9% of memory free) ------------------------------------------------------------------------------- 1. snum float %9.0g school number 2. api2000 int %6.0g 3. apigoal float %9.0g api>=800 4. meals byte %4.0f pct free meals 5. ell byte %4.0f english language learners 6. aved float %9.0g avg parent ed 7. full byte %4.0f pct full credential 8. emer byte %4.0f pct emer credential ------------------------------------------------------------------------------- summarize Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- snum | 250 3165.612 1757.88 25 6186 api2000 | 250 669.92 137.6566 366 953 apigoal | 250 .2 .4008024 0 1 meals | 250 51.456 31.96321 0 100 ell | 250 26.352 25.60583 0 91 aved | 250 2.7422 .7750297 1 4.62 full | 250 87.684 13.57147 34 100 emer | 250 10.928 11.55512 0 63 tab apigoal api>=800 | Freq. Percent Cum. ------------+----------------------------------- 0 | 200 80.00 80.00 1 | 50 20.00 100.00 ------------+----------------------------------- Total | 250 100.00 regress api2000 meals ell aved full Source | SS df MS Number of obs = 250 ---------+------------------------------ F( 4, 245) = 347.64 Model | 4011582.91 4 1002895.73 Prob > F = 0.0000 Residual | 706799.486 245 2884.89586 R-squared = 0.8502 ---------+------------------------------ Adj R-squared = 0.8478 Total | 4718382.40 249 18949.3269 Root MSE = 53.711 ------------------------------------------------------------------------------ api2000 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- meals | -1.901098 .2629118 -7.231 0.000 -2.418954 -1.383243 ell | -.7244631 .2445901 -2.962 0.003 -1.206231 -.2426955 aved | 56.16825 8.940971 6.282 0.000 38.55728 73.77923 full | 1.217558 .3173935 3.836 0.000 .5923897 1.842726 _cons | 526.0491 45.99386 11.437 0.000 435.4552 616.6429 ------------------------------------------------------------------------------ logit apigoal meals ell aved full Logit estimates Number of obs = 250 LR chi2(4) = 157.28 Prob > chi2 = 0.0000 Log likelihood = -46.459034 Pseudo R2 = 0.6286 ------------------------------------------------------------------------------ apigoal | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- meals | -.1073431 .0324698 -3.306 0.001 -.1709829 -.0437034 ell | .0148865 .038053 0.391 0.696 -.0596961 .0894691 aved | 2.199172 .7782202 2.826 0.005 .6738885 3.724456 full | .0299931 .0397431 0.755 0.450 -.047902 .1078881 _cons | -8.514938 4.873673 -1.747 0.081 -18.06716 1.037286 ------------------------------------------------------------------------------ logit apigoal meals aved Logit estimates Number of obs = 250 LR chi2(2) = 156.68 Prob > chi2 = 0.0000 Log likelihood = -46.762399 Pseudo R2 = 0.6262 ------------------------------------------------------------------------------ apigoal | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- meals | -.1038993 .0286783 -3.623 0.000 -.1601077 -.0476909 aved | 2.211981 .776815 2.848 0.004 .6894518 3.734511 _cons | -5.697189 2.959334 -1.925 0.054 -11.49738 .1029997 ------------------------------------------------------------------------------ logit, or Logit estimates Number of obs = 250 LR chi2(2) = 156.68 Prob > chi2 = 0.0000 Log likelihood = -46.762399 Pseudo R2 = 0.6262 ------------------------------------------------------------------------------ apigoal | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- meals | .9013161 .0258482 -3.623 0.000 .852052 .9534285 aved | 9.133795 7.095269 2.848 0.004 1.992623 41.86753 ------------------------------------------------------------------------------ listcoef /* Long & Freese */ logit (N=250): Factor Change in Odds Odds of: 1 vs 0 ------------------------------------------------------------------ apigoal | b z P>|z| e^b e^bStdX SDofX ---------+-------------------------------------------------------- meals | -0.10390 -3.623 0.000 0.9013 0.0361 31.9632 aved | 2.21198 2.848 0.004 9.1338 5.5531 0.7750 ------------------------------------------------------------------ fitstat /* Long & Freese */ Measures of Fit for logit of apigoal Log-Lik Intercept Only: -125.101 Log-Lik Full Model: -46.762 D(247): 93.525 LR(2): 156.676 Prob > LR: 0.000 McFadden's R2: 0.626 McFadden's Adj R2: 0.602 Maximum Likelihood R2: 0.466 Cragg & Uhler's R2: 0.736 McKelvey and Zavoina's R2: 0.879 Efron's R2: 0.675 Variance of y*: 27.170 Variance of error: 3.290 Count R2: 0.940 Adj Count R2: 0.700 AIC: 0.398 AIC*n: 99.525 BIC: -1270.276 BIC': -145.633Example 3
Example 3 involves the use of blocked data, i.e., each observation consists of the number of occurrances of a variable and the number of observations in the population. The syntax for blogit looks like this,
blogit pos_var pop_var [predictors] [if exp] [in range] [, logit_options]This example is from Ashford and Snowden (1970), "Multivariate probit analysis."
use http://www.philender.com/courses/data/ashford, clear describe Contains data from http://www.gseis.ucla.edu/courses/data/ashford.dta obs: 9 from Ashford & Snowden - 1970 vars: 4 15 Feb 2001 22:58 size: 117 (100.0% of memory free) ------------------------------------------------------------------------------- 1. age byte %8.0g 2. pop int %8.0g population 3. cases int %8.0g cases of breathlessness 4. opro float %9.0g observed proportion ------------------------------------------------------------------------------- list age pop cases opro 1. 22 1952 15 .0076844 2. 27 1791 32 .0178671 3. 32 2113 73 .034548 4. 37 2783 167 .0600072 5. 42 2274 223 .0980651 6. 47 2393 357 .1491851 7. 52 2090 521 .2492823 8. 57 1750 558 .3188571 9. 62 1136 478 .4207746 blogit cases pop age Logit estimates Number of obs = 18282 LR chi2(1) = 2333.72 Prob > chi2 = 0.0000 Log likelihood = -5986.5132 Pseudo R2 = 0.1631 ------------------------------------------------------------------------------ _outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- age | .1028125 .0024594 41.803 0.000 .0979921 .1076329 _cons | -6.581895 .1244537 -52.886 0.000 -6.82582 -6.33797 ------------------------------------------------------------------------------ blogit cases pop age, or Logit estimates Number of obs = 18282 LR chi2(1) = 2333.72 Prob > chi2 = 0.0000 Log likelihood = -5986.5132 Pseudo R2 = 0.1631 ------------------------------------------------------------------------------ _outcome | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 1.108284 .0027257 41.80 0.000 1.102954 1.113639 ------------------------------------------------------------------------------ predict pl, p list age opro pl age opro pl 1. 22 .0076844 .0131251 2. 27 .0178671 .0217541 3. 32 .034548 .0358503 4. 37 .0600072 .0585339 5. 42 .0980651 .0941684 6. 47 .1491851 .1480843 7. 52 .2492823 .2251952 8. 57 .3188571 .3270449 9. 62 .4207746 .4483058
Categorical Data Analysis Course
Phil Ender