OLS vs Logistic Scatterplots
Logistic regression models (also known as logit models) provide one approach to analyzing binary response variables. The goal in logistic regression is to model Pr(y=1 | x) = F(xβ). To do this we will make use of the logit transformation.
Let odds = P/(1-P) .
Let log odds or logit g(x) = ln(P/(1-P))
This can be shown to be true since exp(xβ) are just the odds,
The coefficients for logistic regression are estimated using maximum likelihood. Unlike least squares regression, in which, the coefficients can be estimated in a single pass, the coefficients for logistic regression are estimated through an iterative procedure. This is because the effects in OLS regression are linear while logistic regression the solutions are nonlinear in β0 and β1 The goal is to find the coefficients that make the data most likely. This is done by maximizing the likelihood function,
Thus, the odds would be exp(xb) = exp(β0 + β1x)
which can be
rewritten as exp(β0)exp(β1x).
If we increase x by one we get exp(β0 + β1(x+1)) = exp(β0 + β1x+β1)
which, in turn, can be rewritten as exp(β0)exp(β1x)exp(β1).
Next, to compare the odds before and after adding one to x, we compute the odds ratio,
exp(β0)exp(β1x)exp(β1)
---------------------------------- = exp(β1),
exp(β0)exp(β1x)
that is, the odds ratio for a one unit change is just the exponentiated log odds coefficient.
Before we begin estimating some logit models let's play with the grlog command (findit grlog) to see how changes in the constant and logistic regression coefficient affect the predicted probabilities. Now let's begin with some very simple examples.
Intercept Only Example
use http://www.philender.com/courses/data/honors, clear describe Contains data from http://www.gseis.ucla.edu/courses/data/honors.dta obs: 200 vars: 7 10 Feb 2001 16:27 size: 6,400 (99.8% of memory free) ------------------------------------------------------------------------------- 1. id float %9.0g 2. female float %9.0g fl 3. ses float %9.0g sl 4. lang float %9.0g language test score 5. math float %9.0g math score 6. science float %9.0g science score 7. honors float %9.0g ------------------------------------------------------------------------------- summarize Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- id | 200 100.5 57.87918 1 200 female | 200 .545 .4992205 0 1 ses | 200 2.055 .7242914 1 3 lang | 200 52.23 10.25294 28 76 math | 200 52.645 9.368448 33 75 science | 200 51.85 9.900891 26 74 honors | 200 .265 .4424407 0 1 tabulate honors -> tabulation of honors honors | Freq. Percent Cum. ------------+----------------------------------- 0 | 147 73.50 73.50 1 | 53 26.50 100.00 ------------+----------------------------------- Total | 200 100.00 logit honors Logit estimates Number of obs = 200 LR chi2(0) = -0.00 Prob > chi2 = . Log likelihood = -115.64441 Pseudo R2 = -0.0000 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | -1.020141 .1602206 -6.37 0.000 -1.334167 -.706114 ------------------------------------------------------------------------------ display ln(.265/(1-.265)) -1.0201407 predict pr0 list id hon pr0 in 1/10 +---------------------+ | id honors pr0 | |---------------------| 1. | 8 0 .265 | 2. | 67 0 .265 | 3. | 165 0 .265 | 4. | 173 1 .265 | 5. | 135 1 .265 | |---------------------| 6. | 5 0 .265 | 7. | 89 0 .265 | 8. | 46 0 .265 | 9. | 111 0 .265 | 10. | 19 0 .265 | |---------------------| predict xb, xb list id honors xb in 1/10 +--------------------------+ | id honors xb | |--------------------------| 1. | 8 0 -1.020141 | 2. | 67 0 -1.020141 | 3. | 165 0 -1.020141 | 4. | 173 1 -1.020141 | 5. | 135 1 -1.020141 | |--------------------------| 6. | 5 0 -1.020141 | 7. | 89 0 -1.020141 | 8. | 46 0 -1.020141 | 9. | 111 0 -1.020141 | 10. | 19 0 -1.020141 | |--------------------------| /* generate probabilities manually */ generate prm = exp(xb)/(1+exp(xb)) list id honors pr0 prm in 1/10 +----------------------------+ | id honors pr0 prm | |----------------------------| 1. | 8 0 .265 .265 | 2. | 67 0 .265 .265 | 3. | 165 0 .265 .265 | 4. | 173 1 .265 .265 | 5. | 135 1 .265 .265 | |----------------------------| 6. | 5 0 .265 .265 | 7. | 89 0 .265 .265 | 8. | 46 0 .265 .265 | 9. | 111 0 .265 .265 | 10. | 19 0 .265 .265 | +----------------------------+Dichotomous Predictor Example
codebook female ------------------------------------------------------------------------------------------------- female (unlabeled) ------------------------------------------------------------------------------------------------- type: numeric (float) label: fl range: [0,1] units: 1 unique values: 2 missing .: 0/200 tabulation: Freq. Numeric Label 91 0 male 109 1 female tabulate honors female, cell nofreq | female honors | male female | Total -----------+----------------------+---------- 0 | 36.50 37.00 | 73.50 1 | 9.00 17.50 | 26.50 -----------+----------------------+---------- Total | 45.50 54.50 | 100.00 display 36.5*17.5/(37*9) 1.9181682 logit honors female Logit estimates Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .6513707 .3336752 1.95 0.051 -.0026207 1.305362 _cons | -1.400088 .2631619 -5.32 0.000 -1.915876 -.8842998 ------------------------------------------------------------------------------ logit, or Logit estimates Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 1.918168 .6400451 1.95 0.051 .9973827 3.689024 ------------------------------------------------------------------------------ /* predicted probability for males */ display exp(-1.400088+0*.6513707)/(1+exp(-1.400088+0*.6513707)) .19780215 /* predicted probability for females */ display exp(-1.400088+1*.6513707)/(1+exp(-1.400088+1*.6513707)) .32110086 predict pr1 tablist female pr1 /* findit tablist */ +--------------------------+ | female pr1 Freq | |--------------------------| | female .3211009 109 | | male .1978022 91 | +--------------------------+ tabstat honors, by(female) Summary for variables: honors by categories of: female female | mean -------+---------- male | .1978022 female | .3211009 -------+---------- Total | .265 ------------------ display ln(.1978022/(1-.1978022)) -1.4000877 display ln((.3211009/(1-.3211009))/(.1978022/(1-.1978022))) .65137056 display (.3211009/(1-.3211009))/(.1978022/(1-.1978022)) 1.918168Continuous Predictor Example
correlate honors math (obs=200) | honors math -------------+------------------ honors | 1.0000 math | 0.5417 1.0000 scatter honors math, jitter(2) logit honors math Logit estimates Number of obs = 200 LR chi2(1) = 65.27 Prob > chi2 = 0.0000 Log likelihood = -83.008708 Pseudo R2 = 0.2822 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- math | .1715239 .0268555 6.39 0.000 .118888 .2241597 _cons | -10.51268 1.545072 -6.80 0.000 -13.54097 -7.484394 ------------------------------------------------------------------------------ logit, or Logit estimates Number of obs = 200 LR chi2(1) = 65.27 Prob > chi2 = 0.0000 Log likelihood = -83.008708 Pseudo R2 = 0.2822 ------------------------------------------------------------------------------ honors | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- math | 1.187112 .0318805 6.39 0.000 1.126244 1.251271 ------------------------------------------------------------------------------ /* predicted probability for math = 50 */ display exp(-10.51268+50*.1715239)/(1+exp(-10.51268+50*.1715239 )) .12603452 predict pr2 tablist math pr2, sort(v) +------------------------+ | math pr2 Freq | |------------------------| | 33 .0077492 1 | | 35 .0108859 1 | | 37 .0152727 1 | | 38 .0180788 2 | | 39 .0213892 6 | |------------------------| | 40 .0252901 10 | | 41 .0298808 7 | | 42 .0352747 7 | | 43 .0416004 7 | | 44 .049003 4 | |------------------------| | 45 .0576435 8 | | 46 .0676991 8 | | 47 .0793612 3 | | 48 .0928321 5 | | 49 .1083207 10 | |------------------------| | 50 .1260343 7 | | 51 .1461699 8 | | 52 .1689006 6 | | 53 .1943615 7 | | 54 .2226324 10 | |------------------------| | 55 .2537204 5 | | 56 .2875437 7 | | 57 .3239189 13 | | 58 .3625541 6 | | 59 .4030502 2 | |------------------------| | 60 .4449125 5 | | 61 .4875715 7 | | 62 .5304123 4 | | 63 .5728096 5 | | 64 .6141635 5 | |------------------------| | 65 .6539327 3 | | 66 .6916608 4 | | 67 .7269929 2 | | 68 .7596831 1 | | 69 .7895918 2 | |------------------------| | 70 .8166765 1 | | 71 .8409768 4 | | 72 .8625981 3 | | 73 .8816931 1 | | 75 .9130621 2 | +------------------------+ scatter pr2 math, jitter(2)Dichotmous & Continuous Predictors
logit honors female math Logit estimates Number of obs = 200 LR chi2(2) = 72.83 Prob > chi2 = 0.0000 Log likelihood = -79.23169 Pseudo R2 = 0.3149 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 1.120847 .4240297 2.64 0.008 .2897644 1.95193 math | .182538 .0284206 6.42 0.000 .1268347 .2382413 _cons | -11.79228 1.718901 -6.86 0.000 -15.16127 -8.423297 ------------------------------------------------------------------------------ logit, or Logit estimates Number of obs = 200 LR chi2(2) = 72.83 Prob > chi2 = 0.0000 Log likelihood = -79.23169 Pseudo R2 = 0.3149 ------------------------------------------------------------------------------ honors | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 3.067452 1.300691 2.64 0.008 1.336113 7.042269 math | 1.20026 .0341121 6.42 0.000 1.135229 1.269015 ------------------------------------------------------------------------------ predict pr3 scatter pr3 math /* estimated probabilities only for values observed in the sample */ table math female, cont(mean pr3) ------------------------------ math | female score | male female ----------+------------------- 33 | .0094928 35 | .0044808 37 | .0195023 38 | .0077227 .0233167 39 | .0092549 .0278561 40 | .0110878 .033249 41 | .0132787 .0396435 42 | .0158956 .0472077 43 | .0190184 .0561309 44 | .0227404 .0666227 45 | .0271706 .0789118 46 | .0324353 .0932411 47 | .0386795 .1098622 48 | .0460686 .1290245 49 | .0547889 .1509623 50 | .0650472 .1758769 51 | .0770696 .2039158 52 | .0910975 .2351493 53 | .269547 54 | .1261727 .3069571 55 | .1477078 .3470921 56 | .1721942 .3895253 57 | .1997884 .4337002 58 | .2305728 .4789544 59 | .2645327 60 | .3015341 .5697531 61 | .3413092 .6138161 62 | .3834506 .6560904 63 | .427419 .6960288 64 | .4725647 .733215 65 | .7673725 66 | .563462 .7983593 67 | .8261538 68 | .6502869 69 | .8725489 70 | .7281737 71 | .7627678 .907942 72 | .9221051 73 | .8224434 75 | .8696725 ------------------------------ /* predicted probabilities for males for math 33 to 75 */ margins, at(female=0 math=(33(1)75)) noatlegend Adjusted predictions Number of obs = 200 Model VCE : OIM Expression : Pr(honors), predict() ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at | 1 | .0031146 .0025359 1.23 0.219 -.0018556 .0080849 2 | .003736 .002943 1.27 0.204 -.0020321 .0095042 3 | .0044808 .0034116 1.31 0.189 -.0022059 .0111676 4 | .0053734 .0039502 1.36 0.174 -.002369 .0131157 5 | .0064425 .004568 1.41 0.158 -.0025107 .0153957 6 | .0077227 .0052752 1.46 0.143 -.0026165 .0180619 7 | .0092549 .0060829 1.52 0.128 -.0026674 .0211772 8 | .0110878 .0070032 1.58 0.113 -.0026383 .0248138 9 | .0132787 .008049 1.65 0.099 -.002497 .0290544 10 | .0158956 .0092339 1.72 0.085 -.0022024 .0339937 11 | .0190184 .0105722 1.80 0.072 -.0017028 .0397395 12 | .0227404 .0120787 1.88 0.060 -.0009335 .0464142 13 | .0271706 .0137682 1.97 0.048 .0001855 .0541557 14 | .0324353 .0156553 2.07 0.038 .0017515 .0631191 15 | .0386795 .0177542 2.18 0.029 .003882 .0734771 16 | .0460686 .0200781 2.29 0.022 .0067163 .085421 17 | .0547889 .0226392 2.42 0.016 .0104169 .0991609 18 | .0650472 .025448 2.56 0.011 .0151699 .1149244 19 | .0770696 .0285138 2.70 0.007 .0211836 .1329556 20 | .0910975 .031844 2.86 0.004 .0286844 .1535107 21 | .1073817 .0354449 3.03 0.002 .0379109 .1768525 22 | .1261727 .0393212 3.21 0.001 .0491046 .2032407 23 | .1477078 .0434749 3.40 0.001 .0624987 .232917 24 | .1721942 .0479037 3.59 0.000 .0783047 .2660838 25 | .1997884 .0525966 3.80 0.000 .0967009 .3028759 26 | .2305729 .0575269 4.01 0.000 .1178223 .3433234 27 | .2645327 .0626431 4.22 0.000 .1417545 .3873108 28 | .3015341 .0678593 4.44 0.000 .1685323 .4345358 29 | .3413092 .0730471 4.67 0.000 .1981394 .4844789 30 | .3834506 .0780334 4.91 0.000 .2305079 .5363933 31 | .427419 .082607 5.17 0.000 .2655122 .5893257 32 | .4725647 .0865352 5.46 0.000 .3029588 .6421705 33 | .5181636 .0895888 5.78 0.000 .3425727 .6937545 34 | .563462 .0915711 6.15 0.000 .3839858 .7429381 35 | .6077257 .0923439 6.58 0.000 .426735 .7887164 36 | .6502868 .0918459 7.08 0.000 .4702722 .8303014 37 | .6905813 .090099 7.66 0.000 .5139904 .8671722 38 | .7281737 .0872028 8.35 0.000 .5572593 .899088 39 | .7627678 .0833182 9.15 0.000 .5994672 .9260684 40 | .7942035 .0786462 10.10 0.000 .6400598 .9483473 41 | .8224434 .0734054 11.20 0.000 .6785715 .9663153 42 | .8475519 .0678112 12.50 0.000 .7146443 .9804595 43 | .8696725 .062061 14.01 0.000 .7480351 .9913099 ------------------------------------------------------------------------------ /* predicted probabilities for females for math 33 to 75 */ margins, at(female=1 math=(33(1)75)) noatlegend Adjusted predictions Number of obs = 200 Model VCE : OIM Expression : Pr(honors), predict() ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at | 1 | .0094928 .0064778 1.47 0.143 -.0032035 .0221891 2 | .0113722 .0074494 1.53 0.127 -.0032282 .0259727 3 | .0136186 .008549 1.59 0.111 -.0031372 .0303744 4 | .0163014 .0097889 1.67 0.096 -.0028845 .0354873 5 | .0195023 .0111807 1.74 0.081 -.0024115 .041416 6 | .0233167 .0127353 1.83 0.067 -.0016439 .0482774 7 | .0278561 .0144619 1.93 0.054 -.0004887 .0562008 8 | .033249 .0163675 2.03 0.042 .0011694 .0653287 9 | .0396435 .0184554 2.15 0.032 .0034716 .0758154 10 | .0472077 .0207245 2.28 0.023 .0065884 .087827 11 | .0561309 .0231681 2.42 0.015 .0107223 .1015394 12 | .0666227 .0257726 2.59 0.010 .0161093 .1171362 13 | .0789118 .0285176 2.77 0.006 .0230183 .1348052 14 | .0932411 .0313752 2.97 0.003 .0317468 .1547355 15 | .1098622 .0343119 3.20 0.001 .0426121 .1771123 16 | .1290245 .0372907 3.46 0.001 .0559361 .2021128 17 | .1509623 .0402752 3.75 0.000 .0720242 .2299003 18 | .1758769 .0432356 4.07 0.000 .0911366 .2606172 19 | .2039158 .0461535 4.42 0.000 .1134567 .2943749 20 | .2351493 .0490259 4.80 0.000 .1390603 .3312384 21 | .2695471 .0518651 5.20 0.000 .1678933 .3712008 22 | .3069571 .0546905 5.61 0.000 .1997657 .4141486 23 | .3470921 .0575137 6.03 0.000 .2343673 .4598169 24 | .3895253 .0603187 6.46 0.000 .2713028 .5077479 25 | .4337002 .0630448 6.88 0.000 .3101346 .5572659 26 | .4789544 .0655796 7.30 0.000 .3504208 .6074881 27 | .5245567 .0677677 7.74 0.000 .3917344 .6573791 28 | .5697531 .0694344 8.21 0.000 .4336642 .705842 29 | .6138161 .0704157 8.72 0.000 .475804 .7518283 30 | .6560904 .0705877 9.29 0.000 .5177411 .7944397 31 | .6960287 .0698864 9.96 0.000 .5590539 .8330036 32 | .733215 .068315 10.73 0.000 .59932 .8671099 33 | .7673725 .0659387 11.64 0.000 .6381349 .89661 34 | .7983594 .0628717 12.70 0.000 .6751332 .9215855 35 | .8261538 .0592585 13.94 0.000 .7100092 .9422983 36 | .8508328 .0552568 15.40 0.000 .7425315 .959134 37 | .8725489 .0510211 17.10 0.000 .7725493 .9725484 38 | .8915066 .0466923 19.09 0.000 .7999914 .9830218 39 | .907942 .0423899 21.42 0.000 .8248592 .9910247 40 | .9221052 .0382099 24.13 0.000 .8472151 .9969952 41 | .9342471 .0342239 27.30 0.000 .8671694 1.001325 42 | .9446101 .0304818 30.99 0.000 .8848668 1.004353 43 | .9534213 .0270142 35.29 0.000 .9004744 1.006368 ------------------------------------------------------------------------------ /* using factor variables */ logit honors i.female math Iteration 0: log likelihood = -115.64441 Iteration 1: log likelihood = -82.342272 Iteration 2: log likelihood = -79.276145 Iteration 3: log likelihood = -79.231754 Iteration 4: log likelihood = -79.23169 Iteration 5: log likelihood = -79.23169 Logistic regression Number of obs = 200 LR chi2(2) = 72.83 Prob > chi2 = 0.0000 Log likelihood = -79.23169 Pseudo R2 = 0.3149 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.female | 1.120847 .4240394 2.64 0.008 .2897454 1.951949 math | .182538 .0284217 6.42 0.000 .1268324 .2382435 _cons | -11.79228 1.718976 -6.86 0.000 -15.16141 -8.423151 ------------------------------------------------------------------------------ margins female, at(math=(33(1)75)) noatlegend Adjusted predictions Number of obs = 200 Model VCE : OIM Expression : Pr(honors), predict() ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at#female | 1 0 | .0031146 .0025359 1.23 0.219 -.0018556 .0080849 1 1 | .0094928 .0064778 1.47 0.143 -.0032035 .0221891 2 0 | .003736 .002943 1.27 0.204 -.0020321 .0095042 2 1 | .0113722 .0074494 1.53 0.127 -.0032282 .0259727 3 0 | .0044808 .0034116 1.31 0.189 -.0022059 .0111676 3 1 | .0136186 .008549 1.59 0.111 -.0031372 .0303744 4 0 | .0053734 .0039502 1.36 0.174 -.002369 .0131157 4 1 | .0163014 .0097889 1.67 0.096 -.0028845 .0354873 5 0 | .0064425 .004568 1.41 0.158 -.0025107 .0153957 5 1 | .0195023 .0111807 1.74 0.081 -.0024115 .041416 6 0 | .0077227 .0052752 1.46 0.143 -.0026165 .0180619 6 1 | .0233167 .0127353 1.83 0.067 -.0016439 .0482774 7 0 | .0092549 .0060829 1.52 0.128 -.0026674 .0211772 7 1 | .0278561 .0144619 1.93 0.054 -.0004887 .0562008 8 0 | .0110878 .0070032 1.58 0.113 -.0026383 .0248138 8 1 | .033249 .0163675 2.03 0.042 .0011694 .0653287 9 0 | .0132787 .008049 1.65 0.099 -.002497 .0290544 9 1 | .0396435 .0184554 2.15 0.032 .0034716 .0758154 10 0 | .0158956 .0092339 1.72 0.085 -.0022024 .0339937 10 1 | .0472077 .0207245 2.28 0.023 .0065884 .087827 11 0 | .0190184 .0105722 1.80 0.072 -.0017028 .0397395 11 1 | .0561309 .0231681 2.42 0.015 .0107223 .1015394 12 0 | .0227404 .0120787 1.88 0.060 -.0009335 .0464142 12 1 | .0666227 .0257726 2.59 0.010 .0161093 .1171362 13 0 | .0271706 .0137682 1.97 0.048 .0001855 .0541557 13 1 | .0789118 .0285176 2.77 0.006 .0230183 .1348052 14 0 | .0324353 .0156553 2.07 0.038 .0017515 .0631191 14 1 | .0932411 .0313752 2.97 0.003 .0317468 .1547355 15 0 | .0386795 .0177542 2.18 0.029 .003882 .0734771 15 1 | .1098622 .0343119 3.20 0.001 .0426121 .1771123 16 0 | .0460686 .0200781 2.29 0.022 .0067163 .085421 16 1 | .1290245 .0372907 3.46 0.001 .0559361 .2021128 17 0 | .0547889 .0226392 2.42 0.016 .0104169 .0991609 17 1 | .1509623 .0402752 3.75 0.000 .0720242 .2299003 18 0 | .0650472 .025448 2.56 0.011 .0151699 .1149244 18 1 | .1758769 .0432356 4.07 0.000 .0911366 .2606172 19 0 | .0770696 .0285138 2.70 0.007 .0211836 .1329556 19 1 | .2039158 .0461535 4.42 0.000 .1134567 .2943749 20 0 | .0910975 .031844 2.86 0.004 .0286844 .1535107 20 1 | .2351493 .0490259 4.80 0.000 .1390603 .3312384 21 0 | .1073817 .0354449 3.03 0.002 .0379109 .1768525 21 1 | .2695471 .0518651 5.20 0.000 .1678933 .3712008 22 0 | .1261727 .0393212 3.21 0.001 .0491046 .2032407 22 1 | .3069571 .0546905 5.61 0.000 .1997657 .4141486 23 0 | .1477078 .0434749 3.40 0.001 .0624987 .232917 23 1 | .3470921 .0575137 6.03 0.000 .2343673 .4598169 24 0 | .1721942 .0479037 3.59 0.000 .0783047 .2660838 24 1 | .3895253 .0603187 6.46 0.000 .2713028 .5077479 25 0 | .1997884 .0525966 3.80 0.000 .0967009 .3028759 25 1 | .4337002 .0630448 6.88 0.000 .3101346 .5572659 26 0 | .2305729 .0575269 4.01 0.000 .1178223 .3433234 26 1 | .4789544 .0655796 7.30 0.000 .3504208 .6074881 27 0 | .2645327 .0626431 4.22 0.000 .1417545 .3873108 27 1 | .5245567 .0677677 7.74 0.000 .3917344 .6573791 28 0 | .3015341 .0678593 4.44 0.000 .1685323 .4345358 28 1 | .5697531 .0694344 8.21 0.000 .4336642 .705842 29 0 | .3413092 .0730471 4.67 0.000 .1981394 .4844789 29 1 | .6138161 .0704157 8.72 0.000 .475804 .7518283 30 0 | .3834506 .0780334 4.91 0.000 .2305079 .5363933 30 1 | .6560904 .0705877 9.29 0.000 .5177411 .7944397 31 0 | .427419 .082607 5.17 0.000 .2655122 .5893257 31 1 | .6960287 .0698864 9.96 0.000 .5590539 .8330036 32 0 | .4725647 .0865352 5.46 0.000 .3029588 .6421705 32 1 | .733215 .068315 10.73 0.000 .59932 .8671099 33 0 | .5181636 .0895888 5.78 0.000 .3425727 .6937545 33 1 | .7673725 .0659387 11.64 0.000 .6381349 .89661 34 0 | .563462 .0915711 6.15 0.000 .3839858 .7429381 34 1 | .7983594 .0628717 12.70 0.000 .6751332 .9215855 35 0 | .6077257 .0923439 6.58 0.000 .426735 .7887164 35 1 | .8261538 .0592585 13.94 0.000 .7100092 .9422983 36 0 | .6502868 .0918459 7.08 0.000 .4702722 .8303014 36 1 | .8508328 .0552568 15.40 0.000 .7425315 .959134 37 0 | .6905813 .090099 7.66 0.000 .5139904 .8671722 37 1 | .8725489 .0510211 17.10 0.000 .7725493 .9725484 38 0 | .7281737 .0872028 8.35 0.000 .5572593 .899088 38 1 | .8915066 .0466923 19.09 0.000 .7999914 .9830218 39 0 | .7627678 .0833182 9.15 0.000 .5994672 .9260684 39 1 | .907942 .0423899 21.42 0.000 .8248592 .9910247 40 0 | .7942035 .0786462 10.10 0.000 .6400598 .9483473 40 1 | .9221052 .0382099 24.13 0.000 .8472151 .9969952 41 0 | .8224434 .0734054 11.20 0.000 .6785715 .9663153 41 1 | .9342471 .0342239 27.30 0.000 .8671694 1.001325 42 0 | .8475519 .0678112 12.50 0.000 .7146443 .9804595 42 1 | .9446101 .0304818 30.99 0.000 .8848668 1.004353 43 0 | .8696725 .062061 14.01 0.000 .7480351 .9913099 43 1 | .9534213 .0270142 35.29 0.000 .9004744 1.006368 ------------------------------------------------------------------------------
Categorical Data Analysis Course
Phil Ender