Item response models may be used to model the responses of subjects to a number of questions or test items. An item response model with one parameter for item difficulty is known as a Rasch model. Georg Rasch (1901-1980), a Danish statistician, gave an axiomatic derivation of the model in the 1960s. We will be using a conditional (fixed-effects) logit model to illustrate the model, however, Rasch's derivation used a different approach, but one that turns out to be equivalent to the fixed-effects logit. Rasch models are one of the dominant models for binary items (e.g., success/failure on test items) in psychometrics.
In the Rasch model the log odds of subject i giving a correct response to item j may be modeled using a one-parameter logistic response model
In terms of probability the model looks like this,
Example
use http://www.gseis.ucla.edu/courses/data/lsat3 listblck in 51/65 id item resp i1 i2 i3 i4 i5 total 51. 3002 1 0 -1 0 0 0 0 1 52. 3002 2 0 0 -1 0 0 0 1 53. 3002 3 0 0 0 -1 0 0 1 54. 3002 4 1 0 0 0 -1 0 1 55. 3002 5 0 0 0 0 0 -1 1 56. 4001 1 0 -1 0 0 0 0 2 57. 4001 2 0 0 -1 0 0 0 2 58. 4001 3 0 0 0 -1 0 0 2 59. 4001 4 1 0 0 0 -1 0 2 60. 4001 5 1 0 0 0 0 -1 2 61. 4002 1 0 -1 0 0 0 0 2 62. 4002 2 0 0 -1 0 0 0 2 63. 4002 3 0 0 0 -1 0 0 2 64. 4002 4 1 0 0 0 -1 0 2 65. 4002 5 1 0 0 0 0 -1 2 tabulate total if item==1 total | Freq. Percent Cum. ------------+----------------------------------- 0 | 3 0.30 0.30 1 | 20 2.00 2.30 2 | 85 8.50 10.80 3 | 237 23.70 34.50 4 | 357 35.70 70.20 5 | 298 29.80 100.00 ------------+----------------------------------- Total | 1000 100.00 tabulate item resp, row nofreq | resp item | 0 1 | Total -----------+----------------------+---------- 1 | 7.60 92.40 | 100.00 2 | 29.10 70.90 | 100.00 3 | 44.70 55.30 | 100.00 4 | 23.70 76.30 | 100.00 5 | 13.00 87.00 | 100.00 -----------+----------------------+---------- Total | 23.62 76.38 | 100.00Item 1 is the easiest item, responded correctly by the most subjects, so we will use it as the reference item. We will run an fixed-effects xtlogit using the negative indicators for each of the remaining items. The fixed effects xtlogit is equivalent to running the conditional logistic command clogit.
xtlogit resp i2 i3 i4 i5, i(id) fe /* clogit resp i2 i3 i4 i5, group(id) */ note: multiple positive outcomes within groups encountered. note: 301 groups (1505 obs) dropped due to all positive or all negative outcomes. Conditional fixed-effects logit Number of obs = 3495 Group variable (i) : id Number of groups = 699 Obs per group: min = 5 avg = 5.0 max = 5 LR chi2(4) = 513.24 Log likelihood = -1091.5697 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ resp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- i2 | 1.731034 .1446523 11.97 0.000 1.447521 2.014548 i3 | 2.492113 .1441542 17.29 0.000 2.209576 2.77465 i4 | 1.424539 .146451 9.73 0.000 1.1375 1.711578 i5 | .6329562 .1566198 4.04 0.000 .3259869 .9399254 ------------------------------------------------------------------------------Item 1, the easiest item, has a difficulty value fixed at zero. Item 3 is the most difficult item with a coefficient of 2.49. Note that the fixed-effects xtlogit has dropped 301 subjects from the analysis. These subjects either responded to all items correctly or to all items incorrectly; in a conditional likelihood these subjects carry no information about the difficulty of the items.
We can also look at the item difficulty in terms of the probability of getting an items correct.
predict p1 (option pc1 assumed; conditional probability for single outcome within group) tablist item p1 /* available from ATS */ +------------------------+ | item p1 Freq | |------------------------| | 1 .4922531 1000 | | 2 .0871786 1000 | | 3 .0407266 1000 | | 4 .1184456 1000 | | 5 .2613961 1000 | +------------------------+Looking at the item probabilities, we see that Item 1 has the highest probability (P = .49) of a correct response and Item 3 has the lowest probability (P = .04) of a correct response. The probabilities follow the same difficulty patterns and the coefficients.
We can check our model specification that the difficulty parameters are the same for the "poor" (low scoring) subjects and the "good" (high scoring) subjects, distinguished by their total score. We will do this using Hausman tests versus low scoring subjects (total = 0,1 or 2) and versus high scoring subjects (total = 3,4 or 5). The hausman command with the less option compares the fully efficient model with the less efficient, but consistent model.
hausman, save xtlogit resp i2 i3 i4 i5 if total<3, i(id) fe nolog note: multiple positive outcomes within groups encountered. note: 3 groups (15 obs) dropped due to all positive or all negative outcomes. Conditional fixed-effects logit Number of obs = 525 Group variable (i) : id Number of groups = 105 Obs per group: min = 5 avg = 5.0 max = 5 LR chi2(4) = 93.26 Log likelihood = -181.27655 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ resp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- i2 | 1.533091 .279329 5.49 0.000 .9856159 2.080566 i3 | 2.743066 .4007517 6.84 0.000 1.957607 3.528525 i4 | 1.326592 .2689439 4.93 0.000 .7994716 1.853712 i5 | .5548602 .2587489 2.14 0.032 .0477217 1.061999 ------------------------------------------------------------------------------ hausman, less ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | Current Prior Difference S.E. -------------+------------------------------------------------------------- i2 | 1.533091 1.731034 -.1979437 .2389569 i3 | 2.743066 2.492113 .2509529 .3739272 i4 | 1.326592 1.424539 -.097947 .2255725 i5 | .5548602 .6329562 -.078096 .2059641 --------------------------------------------------------------------------- b = less efficient estimates obtained from clogit B = fully efficient estimates obtained previously from clogit Test: Ho: difference in coefficients not systematic chi2( 4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 1.50 Prob>chi2 = 0.8275 xtlogit resp i2 i3 i4 i5 if total>2, i(id) fe nolog note: multiple positive outcomes within groups encountered. note: 298 groups (1490 obs) dropped due to all positive or all negative outcomes. Conditional fixed-effects logit Number of obs = 2970 Group variable (i) : id Number of groups = 594 Obs per group: min = 5 avg = 5.0 max = 5 LR chi2(4) = 421.53 Log likelihood = -909.517 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ resp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- i2 | 1.789893 .1775602 10.08 0.000 1.441881 2.137904 i3 | 2.519253 .1748241 14.41 0.000 2.176604 2.861902 i4 | 1.472984 .1812922 8.12 0.000 1.117658 1.82831 i5 | .6810296 .1984919 3.43 0.001 .2919926 1.070067 ------------------------------------------------------------------------------ hausman, less ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | Current Prior Difference S.E. -------------+------------------------------------------------------------- i2 | 1.789893 1.731034 .0588582 .1029725 i3 | 2.519253 2.492113 .0271404 .0989092 i4 | 1.472984 1.424539 .0484448 .1068596 i5 | .6810296 .6329562 .0480734 .1219396 --------------------------------------------------------------------------- b = less efficient estimates obtained from clogit B = fully efficient estimates obtained previously from clogit Test: Ho: difference in coefficients not systematic chi2( 4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 1.59 Prob>chi2 = 0.8097Rasch models, along with other item response models, have an assumption of local independence, that is, the responses to a given item are independent of the responses to other items in the test. In practical terms, this implies Pr(yij=1 & yik=1) = Pr(yij=1)*Pr(yik=1). Further, Rasch models, because they are one-parameter models, assume that all of the items have equal discrimination, that is, the items discriminate equally well for "good" subjects as they do for "poor" subjects. Two-parameter and three-parameter item response models include measures of item discrimination along with item difficulty.
It is also possible to estimate the model using the gllamm command. gllamm is short for generalized linear latent and mixed models. This is, in fact, a random effects model. Note that the model includes a constant.
gllamm resp i2 i3 i4 i5, i(id) fam(binom) link(logit) Iteration 0: log likelihood = -2474.5358 Iteration 1: log likelihood = -2467.6634 Iteration 2: log likelihood = -2466.9383 Iteration 3: log likelihood = -2466.9377 Iteration 4: log likelihood = -2466.9377 number of level 1 units = 5000 number of level 2 units = 1000 Condition Number = 7.5146066 gllamm model log likelihood = -2466.9377 ------------------------------------------------------------------------------ resp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- i2 | 1.73141 .1440341 12.02 0.000 1.449108 2.013712 i3 | 2.490159 .1437773 17.32 0.000 2.208361 2.771958 i4 | 1.423565 .1457916 9.76 0.000 1.137818 1.709311 i5 | .6306089 .1561066 4.04 0.000 .3246455 .9365723 _cons | 2.730011 .1304411 20.93 0.000 2.474351 2.985671 ------------------------------------------------------------------------------ Variances and covariances of random effects ------------------------------------------------------------------------------ ***level 2 (id) var(1): .57022578 (.10486574)One advantage to using gllamm is that we can include all of the items by specifying the nocons option.
gllamm resp i1 i2 i3 i4 i5, i(id) fam(binom) link(logit) nolog nocons number of level 1 units = 5000 number of level 2 units = 1000 Condition Number = 2.3631559 gllamm model log likelihood = -2466.9377 ------------------------------------------------------------------------------ resp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- i1 | -2.730012 .1304412 -20.93 0.000 -2.985672 -2.474352 i2 | -.9986011 .0791763 -12.61 0.000 -1.153784 -.8434185 i3 | -.2398516 .0717745 -3.34 0.001 -.380527 -.0991762 i4 | -1.306446 .0846371 -15.44 0.000 -1.472332 -1.140561 i5 | -2.099402 .1054448 -19.91 0.000 -2.30607 -1.892734 ------------------------------------------------------------------------------ Variances and covariances of random effects ------------------------------------------------------------------------------ ***level 2 (id) var(1): .57022593 (.10486576) ------------------------------------------------------------------------------Now we can compute the conditional probabilities using gllapred.
generate e1=-2.730012 generate e2=-.9986011 generate e3=-.2398516 generate e4=-1.306446 generate e5=-2.099402 gllapred, cp, mu us(e) tablist item cp p1 +------------------------------------+ | item cp p1 Freq | |------------------------------------| | 1 .49999993 .4922531 1000 | | 2 .15040721 .0871786 1000 | | 3 .07655087 .0407266 1000 | | 4 .19410324 .1184456 1000 | | 5 .34737228 .2613961 1000 | +------------------------------------+
use http://www.gseis.ucla.edu/courses/data/lsat0 list in 1/30 +----------------------------------------------+ | id resp1 resp2 resp3 resp4 resp5 | |----------------------------------------------| 1. | 1001 0 0 0 0 0 | 2. | 1002 0 0 0 0 0 | 3. | 1003 0 0 0 0 0 | 4. | 2001 0 0 0 0 1 | 5. | 2002 0 0 0 0 1 | |----------------------------------------------| 6. | 2003 0 0 0 0 1 | 7. | 2004 0 0 0 0 1 | 8. | 2005 0 0 0 0 1 | 9. | 2006 0 0 0 0 1 | 10. | 3001 0 0 0 1 0 | |----------------------------------------------| 11. | 3002 0 0 0 1 0 | 12. | 4001 0 0 0 1 1 | 13. | 4002 0 0 0 1 1 | 14. | 4003 0 0 0 1 1 | 15. | 4004 0 0 0 1 1 | |----------------------------------------------| 16. | 4005 0 0 0 1 1 | 17. | 4006 0 0 0 1 1 | 18. | 4007 0 0 0 1 1 | 19. | 4008 0 0 0 1 1 | 20. | 4009 0 0 0 1 1 | |----------------------------------------------| 21. | 4010 0 0 0 1 1 | 22. | 4011 0 0 0 1 1 | 23. | 5001 0 0 1 0 0 | 24. | 6001 0 0 1 0 1 | 25. | 7001 0 0 1 1 0 | |----------------------------------------------| 26. | 7002 0 0 1 1 0 | 27. | 7003 0 0 1 1 0 | 28. | 8001 0 0 1 1 1 | 29. | 8002 0 0 1 1 1 | 30. | 8003 0 0 1 1 1 | +----------------------------------------------+ generate total=resp1+resp2+resp3+resp4+resp5 list in 1/30 +------------------------------------------------------+ | id resp1 resp2 resp3 resp4 resp5 total | |------------------------------------------------------| 1. | 1001 0 0 0 0 0 0 | 2. | 1002 0 0 0 0 0 0 | 3. | 1003 0 0 0 0 0 0 | 4. | 2001 0 0 0 0 1 1 | 5. | 2002 0 0 0 0 1 1 | |------------------------------------------------------| 6. | 2003 0 0 0 0 1 1 | 7. | 2004 0 0 0 0 1 1 | 8. | 2005 0 0 0 0 1 1 | 9. | 2006 0 0 0 0 1 1 | 10. | 3001 0 0 0 1 0 1 | |------------------------------------------------------| 11. | 3002 0 0 0 1 0 1 | 12. | 4001 0 0 0 1 1 2 | 13. | 4002 0 0 0 1 1 2 | 14. | 4003 0 0 0 1 1 2 | 15. | 4004 0 0 0 1 1 2 | |------------------------------------------------------| 16. | 4005 0 0 0 1 1 2 | 17. | 4006 0 0 0 1 1 2 | 18. | 4007 0 0 0 1 1 2 | 19. | 4008 0 0 0 1 1 2 | 20. | 4009 0 0 0 1 1 2 | |------------------------------------------------------| 21. | 4010 0 0 0 1 1 2 | 22. | 4011 0 0 0 1 1 2 | 23. | 5001 0 0 1 0 0 1 | 24. | 6001 0 0 1 0 1 2 | 25. | 7001 0 0 1 1 0 2 | |------------------------------------------------------| 26. | 7002 0 0 1 1 0 2 | 27. | 7003 0 0 1 1 0 2 | 28. | 8001 0 0 1 1 1 3 | 29. | 8002 0 0 1 1 1 3 | 30. | 8003 0 0 1 1 1 3 | +------------------------------------------------------+ reshape long resp, i(id) j(item) list in 46/65 +----------------------------+ | id item resp total | |----------------------------| 46. | 3001 1 0 1 | 47. | 3001 2 0 1 | 48. | 3001 3 0 1 | 49. | 3001 4 1 1 | 50. | 3001 5 0 1 | |----------------------------| 51. | 3002 1 0 1 | 52. | 3002 2 0 1 | 53. | 3002 3 0 1 | 54. | 3002 4 1 1 | 55. | 3002 5 0 1 | |----------------------------| 56. | 4001 1 0 2 | 57. | 4001 2 0 2 | 58. | 4001 3 0 2 | 59. | 4001 4 1 2 | 60. | 4001 5 1 2 | |----------------------------| 61. | 4002 1 0 2 | 62. | 4002 2 0 2 | 63. | 4002 3 0 2 | 64. | 4002 4 1 2 | 65. | 4002 5 1 2 | +----------------------------+ for num 1/5 : gen iX = -(X==item) list in 1/30 +-----------------------------------------------------+ | id item resp total i1 i2 i3 i4 i5 | |-----------------------------------------------------| 1. | 1001 1 0 0 -1 0 0 0 0 | 2. | 1001 2 0 0 0 -1 0 0 0 | 3. | 1001 3 0 0 0 0 -1 0 0 | 4. | 1001 4 0 0 0 0 0 -1 0 | 5. | 1001 5 0 0 0 0 0 0 -1 | |-----------------------------------------------------| 6. | 1002 1 0 0 -1 0 0 0 0 | 7. | 1002 2 0 0 0 -1 0 0 0 | 8. | 1002 3 0 0 0 0 -1 0 0 | 9. | 1002 4 0 0 0 0 0 -1 0 | 10. | 1002 5 0 0 0 0 0 0 -1 | |-----------------------------------------------------| 11. | 1003 1 0 0 -1 0 0 0 0 | 12. | 1003 2 0 0 0 -1 0 0 0 | 13. | 1003 3 0 0 0 0 -1 0 0 | 14. | 1003 4 0 0 0 0 0 -1 0 | 15. | 1003 5 0 0 0 0 0 0 -1 | |-----------------------------------------------------| 16. | 2001 1 0 1 -1 0 0 0 0 | 17. | 2001 2 0 1 0 -1 0 0 0 | 18. | 2001 3 0 1 0 0 -1 0 0 | 19. | 2001 4 0 1 0 0 0 -1 0 | 20. | 2001 5 1 1 0 0 0 0 -1 | |-----------------------------------------------------| 21. | 2002 1 0 1 -1 0 0 0 0 | 22. | 2002 2 0 1 0 -1 0 0 0 | 23. | 2002 3 0 1 0 0 -1 0 0 | 24. | 2002 4 0 1 0 0 0 -1 0 | 25. | 2002 5 1 1 0 0 0 0 -1 | |-----------------------------------------------------| 26. | 2003 1 0 1 -1 0 0 0 0 | 27. | 2003 2 0 1 0 -1 0 0 0 | 28. | 2003 3 0 1 0 0 -1 0 0 | 29. | 2003 4 0 1 0 0 0 -1 0 | 30. | 2003 5 1 1 0 0 0 0 -1 | +-----------------------------------------------------+A Stata Program: raschtest
Jean-Benoit Hardouin of the Regional Health Observatory in France has written several ado programs that will perform a maximum likelihood Rasch analysis. You will need the ado files raschtest.ado and gammasym.ado. The example below uses version 7.3 of raschtest dated 2july2005.
The data are organized differently from the analysis above. The data are organized by individual with each item scored right or wrong (0 or 1). We will use the dataset lsat3 reshaping it to the proper form.
use http://www.gseis.ucla.edu/courses/data/lsat3, clear drop i1- total rename item q rename resp item reshape wide item, i(id) j(q) list in 1/20, clean id item1 item2 item3 item4 item5 1. 1001 0 0 0 0 0 2. 1002 0 0 0 0 0 3. 1003 0 0 0 0 0 4. 2001 0 0 0 0 1 5. 2002 0 0 0 0 1 6. 2003 0 0 0 0 1 7. 2004 0 0 0 0 1 8. 2005 0 0 0 0 1 9. 2006 0 0 0 0 1 10. 3001 0 0 0 1 0 11. 3002 0 0 0 1 0 12. 4001 0 0 0 1 1 13. 4002 0 0 0 1 1 14. 4003 0 0 0 1 1 15. 4004 0 0 0 1 1 16. 4005 0 0 0 1 1 17. 4006 0 0 0 1 1 18. 4007 0 0 0 1 1 19. 4008 0 0 0 1 1 20. 4009 0 0 0 1 1The raschtest program computes both the item difficulties and the ability parameters.
raschtest item1-item5 Estimation method: Conditional maximum likelihood (CML) Number of items: 5 Number of groups: 6 (4 of them are used to compute the statistics of test) Number of individuals: 1000 (0 individuals removed for missing values) Number of individuals with nul or perfect score: 301 Conditional log-likelihood: -1091.5697 Log-likelihood: -1849.5149 Difficulty Standardized Items parameters std Err. R1c df p-value Outfit Infit U ----------------------------------------------------------------------------- item1 -0.63296 0.15662 0.217 3 0.9749 -0.026 -0.081 0.116 item2 1.09808 0.12276 1.555 3 0.6696 -0.085 0.065 -0.193 item3 1.85916 0.12182 0.910 3 0.8231 -0.415 -0.346 -0.340 item4 0.79158 0.12508 0.198 3 0.9779 0.115 0.165 0.117 item5* 0.00000 . 0.119 3 0.9894 0.141 0.140 0.281 ----------------------------------------------------------------------------- R1c test R1c= 3.012 12 0.9955 Andersen LR test Z= 3.136 12 0.9945 ----------------------------------------------------------------------------- *: The difficulty parameter of this item had been fixed to 0 You have groups of scores with less than 30 individuals. The tests can be invalid. Ability Expected Group Score parameters std Err. Freq. Score ll -------------------------------------------------------------- 0 0 -2.167 2.790 3 0.38 -------------------------------------------------------------- 1 1 -0.714 0.735 20 1.20 -24.7519 -------------------------------------------------------------- 2 2 0.212 0.483 85 2.06 -155.9384 -------------------------------------------------------------- 3 3 1.045 0.479 237 2.94 -437.7270 -------------------------------------------------------------- 4 4 1.959 0.727 357 3.80 -471.5843 -------------------------------------------------------------- 5 5 3.400 2.763 298 4.61 --------------------------------------------------------------By default, raschtest sets the difficulty of the last item in the list to zero, so the values of the difficulty parameters are different in this analysis. But note that item1 is the easiest item. We can make item1 have a difficulty of zero by changing the order of the variables in the command so that item1 comes last. Now the items difficulties are the same as in our original xtlogit (conditional logistic) example. The genlt option generates latent trait (ability) scores for each subject and the genscore option gives a total correct for each observation.
raschtest item2-item5 item1, genlt(ltscore) genscore(totscore) Estimation method: Conditional maximum likelihood (CML) Number of items: 5 Number of groups: 6 (4 of them are used to compute the statistics of test) Number of individuals: 1000 (0 individuals removed for missing values) Number of individuals with nul or perfect score: 301 Conditional log-likelihood: -1091.5697 Log-likelihood: -1849.5066 Difficulty Standardized Items parameters std Err. R1c df p-value Outfit Infit U ----------------------------------------------------------------------------- item2 1.73103 0.14465 1.350 3 0.7173 -0.085 0.065 -0.193 item3 2.49211 0.14415 1.025 3 0.7951 -0.415 -0.346 -0.340 item4 1.42454 0.14645 0.145 3 0.9859 0.115 0.165 0.117 item5 0.63296 0.15662 0.147 3 0.9856 0.141 0.140 0.281 item1* 0.00000 . 0.204 3 0.9770 -0.026 -0.081 0.116 ----------------------------------------------------------------------------- R1c test R1c= 3.012 12 0.9955 Andersen LR test Z= 3.136 12 0.9945 ----------------------------------------------------------------------------- *: The difficulty parameter of this item had been fixed to 0 You have groups of scores with less than 30 individuals. The tests can be invalid. Ability Expected Group Score parameters std Err. Freq. Score ll -------------------------------------------------------------- 0 0 -1.534 2.790 3 0.38 -------------------------------------------------------------- 1 1 -0.081 0.735 20 1.20 -24.7519 -------------------------------------------------------------- 2 2 0.845 0.483 85 2.06 -155.9384 -------------------------------------------------------------- 3 3 1.678 0.479 237 2.94 -437.7270 -------------------------------------------------------------- 4 4 2.592 0.727 357 3.80 -471.5843 -------------------------------------------------------------- 5 5 4.033 2.763 298 4.61 --------------------------------------------------------------We can graph both item difficulty and ability on the same latent dimension.
list in 1/20, clean id item1 item2 item3 item4 item5 totscore ltscore 1. 1001 0 0 0 0 0 0 -1.534 2. 1002 0 0 0 0 0 0 -1.534 3. 1003 0 0 0 0 0 0 -1.534 4. 2001 0 0 0 0 1 1 -.081 5. 2002 0 0 0 0 1 1 -.081 6. 2003 0 0 0 0 1 1 -.081 7. 2004 0 0 0 0 1 1 -.081 8. 2005 0 0 0 0 1 1 -.081 9. 2006 0 0 0 0 1 1 -.081 10. 3001 0 0 0 1 0 1 -.081 11. 3002 0 0 0 1 0 1 -.081 12. 4001 0 0 0 1 1 2 .845 13. 4002 0 0 0 1 1 2 .845 14. 4003 0 0 0 1 1 2 .845 15. 4004 0 0 0 1 1 2 .845 16. 4005 0 0 0 1 1 2 .845 17. 4006 0 0 0 1 1 2 .845 18. 4007 0 0 0 1 1 2 .845 19. 4008 0 0 0 1 1 2 .845 20. 4009 0 0 0 1 1 2 .845
Categorical Data Analysis Course
Phil Ender revised 21feb06