use http://www.ats.ucla.edu/stat/stata/stat130/depres01
table visit group, cont(mean depressd) ------------------------------ | group visit | 0 1 ----------+------------------- 1 | .8518519 .6176471 2 | .8181818 .516129 3 | .7058824 .2758621 4 | .6470588 .2857143 5 | .5882353 .2142857 6 | .4705882 .1071429 ------------------------------Let's start off with a random effects longitudinal logit analyses. For the moment we will treat visit as continuous.
xtlogit depressd group visit, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(2) = 42.40 Log likelihood = -134.88312 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -2.692808 .7325381 -3.68 0.000 -4.128557 -1.25706 t | -.7267356 .1232912 -5.89 0.000 -.9683819 -.4850893 _cons | 4.149321 .7270796 5.71 0.000 2.724271 5.574371 -------------+---------------------------------------------------------------- /lnsig2u | 1.593743 .2930085 1.019457 2.168029 -------------+---------------------------------------------------------------- sigma_u | 2.21859 .3250328 1.664839 2.956525 rho | .5993832 .0703581 .457257 .7265487 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 69.18 Prob >= chibar2 = 0.000
Both group and visit are statistically significant. We can also obtain the results in terms of odds ratios
xtlogit, or Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(2) = 42.40 Log likelihood = -134.88312 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | OR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | .0676906 .0495859 -3.68 0.000 .0161061 .2844892 t | .4834847 .0596094 -5.89 0.000 .3796969 .6156422 -------------+---------------------------------------------------------------- /lnsig2u | 1.593743 .2930085 1.019457 2.168029 -------------+---------------------------------------------------------------- sigma_u | 2.21859 .3250328 1.664839 2.956525 rho | .5993832 .0703581 .457257 .7265487 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 69.18 Prob >= chibar2 = 0.000
We can compute the intraclass correlation using the loneway command.
loneway depressd subj One Way Analysis of Variance for depressd: Number of obs = 295 R-squared = 0.5749 Source SS df MS F Prob > F ----------------------------------------------------------------------- Between subj 42.375141 60 .70625235 5.27 0.0000 Within subj 31.333333 234 .13390313 ----------------------------------------------------------------------- Total 73.708475 294 .2507091 Intraclass Asy. correlation S.E. [95% Conf. Interval] ------------------------------------------------ 0.46987 0.06561 0.34127 0.59846 Estimated SD of subj effect .3445006 Estimated SD within subj .3659278 Est. reliability of a subj mean .8104033 (evaluated at n=4.82)
Next, we'll recode visit so that it starts with zero. This will set the constant to be the log-odds for the placebo group at the first visit.
replace visit = visit - 1 xtlogit depressd group visit, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(2) = 42.40 Log likelihood = -134.88312 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -2.692808 .7325381 -3.68 0.000 -4.128557 -1.25706 visit | -.7267356 .1232912 -5.89 0.000 -.9683819 -.4850893 _cons | 3.422586 .6561934 5.22 0.000 2.13647 4.708701 -------------+---------------------------------------------------------------- /lnsig2u | 1.593743 .2930085 1.019457 2.168029 -------------+---------------------------------------------------------------- sigma_u | 2.21859 .3250328 1.664839 2.956525 rho | .5993832 .0703581 .457257 .7265487 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 69.18 Prob >= chibar2 = 0.000Let's add in the pretest measure of depression, pre and then check to see if the covariate interacts with the treatment.
xtlogit depressd pre group visit, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(3) = 43.72 Log likelihood = -132.59465 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .2049549 .0930959 2.20 0.028 .0224903 .3874195 group | -2.820389 .7282979 -3.87 0.000 -4.247827 -1.392952 visit | -.7370056 .1251984 -5.89 0.000 -.98239 -.4916212 _cons | -.7833667 1.953497 -0.40 0.688 -4.612151 3.045418 -------------+---------------------------------------------------------------- /lnsig2u | 1.494296 .3069864 .8926136 2.095978 -------------+---------------------------------------------------------------- sigma_u | 2.110971 .3240197 1.562531 2.85191 rho | .5752853 .0750066 .4259893 .7120027 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 57.60 Prob >= chibar2 = 0.000 generate preXgroup = pre*group xtlogit depressd pre group visit preXgroup, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(4) = 43.41 Log likelihood = -132.59891 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .2031032 .1385449 1.47 0.143 -.0684399 .4746463 group | -2.890287 3.917997 -0.74 0.461 -10.56942 4.788847 visit | -.7371763 .1253533 -5.88 0.000 -.9828643 -.4914883 preXgroup | .0035231 .1853638 0.02 0.985 -.3597832 .3668295 _cons | -.7486509 2.859295 -0.26 0.793 -6.352767 4.855465 -------------+---------------------------------------------------------------- /lnsig2u | 1.496379 .309774 .8892332 2.103525 -------------+---------------------------------------------------------------- sigma_u | 2.113171 .3273027 1.559892 2.862692 rho | .5757942 .0756639 .4251629 .7135478 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 57.54 Prob >= chibar2 = 0.000Instead of assuming that visit is continuous, we will code it as categorical and then check to see if the categorical version is significantly better than the continuous version.
xi: xtlogit depressd pre group i.visit, i(subj) re i.visit _Ivisit_0-5 (naturally coded; _Ivisit_0 omitted) Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(7) = 44.39 Log likelihood = -131.53981 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .208677 .0940654 2.22 0.027 .0243122 .3930417 group | -2.831145 .7381423 -3.84 0.000 -4.277877 -1.384412 _Ivisit_1 | -.496379 .5611606 -0.88 0.376 -1.596234 .6034755 _Ivisit_2 | -1.944512 .6100314 -3.19 0.001 -3.140152 -.7488727 _Ivisit_3 | -2.06131 .6218449 -3.31 0.001 -3.280104 -.8425167 _Ivisit_4 | -2.685658 .6541072 -4.11 0.000 -3.967684 -1.403631 _Ivisit_5 | -3.871798 .7371506 -5.25 0.000 -5.316586 -2.427009 _cons | -.8598885 1.986971 -0.43 0.665 -4.754279 3.034502 -------------+---------------------------------------------------------------- /lnsig2u | 1.51701 .3098693 .9096776 2.124343 -------------+---------------------------------------------------------------- sigma_u | 2.135082 .3307982 1.575919 2.892645 rho | .5808254 .075443 .430167 .7177839 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 58.15 Prob >= chibar2 = 0.000 test _Ivisit_1 _Ivisit_2 _Ivisit_3 _Ivisit_4 _Ivisit_5 ( 1) [depressd]_Ivisit_1 = 0 ( 2) [depressd]_Ivisit_2 = 0 ( 3) [depressd]_Ivisit_3 = 0 ( 4) [depressd]_Ivisit_4 = 0 ( 5) [depressd]_Ivisit_5 = 0 chi2( 5) = 35.82 Prob > chi2 = 0.0000 xtlogit depressd pre group visit _Ivisit_2 _Ivisit_3 _Ivisit_4 _Ivisit_5, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(7) = 44.39 Log likelihood = -131.53981 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .208677 .0940654 2.22 0.027 .0243122 .3930417 group | -2.831145 .7381423 -3.84 0.000 -4.277877 -1.384412 visit | -.496379 .5611606 -0.88 0.376 -1.596234 .6034755 _Ivisit_2 | -.9517542 .9966142 -0.95 0.340 -2.905082 1.001574 _Ivisit_3 | -.5721733 1.504136 -0.38 0.704 -3.520227 2.37588 _Ivisit_4 | -.7001415 2.044485 -0.34 0.732 -4.707259 3.306976 _Ivisit_5 | -1.389903 2.606625 -0.53 0.594 -6.498794 3.718989 _cons | -.8598885 1.986971 -0.43 0.665 -4.754279 3.034502 -------------+---------------------------------------------------------------- /lnsig2u | 1.51701 .3098693 .9096776 2.124343 -------------+---------------------------------------------------------------- sigma_u | 2.135082 .3307982 1.575919 2.892645 rho | .5808254 .075443 .430167 .7177839 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 58.15 Prob >= chibar2 = 0.000 test _Ivisit_2 _Ivisit_3 _Ivisit_4 _Ivisit_5 ( 1) [depressd]_Ivisit_2 = 0 ( 2) [depressd]_Ivisit_3 = 0 ( 3) [depressd]_Ivisit_4 = 0 ( 4) [depressd]_Ivisit_5 = 0 chi2( 4) = 2.05 Prob > chi2 = 0.7273By testing the k - 2 dummies from the model that includes the continuous version of visit we see that dummy coding does not provide significantly more information than the continuous variable.
Finally, let's see if there is a group by visit interaction, that is, is the visit effect different for the placebo group than for the estrogen group?
xtlogit depressd pre group visit groupXvisit, i(subj) re Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(4) = 43.47 Log likelihood = -132.3596 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .2038696 .0927866 2.20 0.028 .0220112 .3857281 group | -2.465363 .8971828 -2.75 0.006 -4.223809 -.7069171 visit | -.640613 .1889034 -3.39 0.001 -1.010857 -.2703692 groupXvisit | -.1616086 .2408169 -0.67 0.502 -.633601 .3103838 _cons | -1.004168 1.979193 -0.51 0.612 -4.883315 2.874979 -------------+---------------------------------------------------------------- /lnsig2u | 1.499876 .3141927 .8840696 2.115682 -------------+---------------------------------------------------------------- sigma_u | 2.116869 .3325524 1.55587 2.880147 rho | .5766481 .0767023 .4239014 .7160262 ------------------------------------------------------------------------------ Likelihood-ratio test of rho=0: chibar2(01) = 57.45 Prob >= chibar2 = 0.000The answer to our last question is, no, there is no group by visit interaction. So, here is our final model:
Random-effects logistic regression Number of obs = 295 Group variable (i): subj Number of groups = 61 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.8 max = 6 Wald chi2(3) = 43.72 Log likelihood = -132.59465 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ depressd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pre | .2049549 .0930959 2.20 0.028 .0224903 .3874195 group | -2.820389 .7282979 -3.87 0.000 -4.247827 -1.392952 visit | -.7370056 .1251984 -5.89 0.000 -.98239 -.4916212 _cons | -.7833667 1.953497 -0.40 0.688 -4.612151 3.045418 -------------+---------------------------------------------------------------- /lnsig2u | 1.494296 .3069864 .8926136 2.095978 -------------+---------------------------------------------------------------- sigma_u | 2.110971 .3240197 1.562531 2.85191 rho | .5752853 .0750066 .4259893 .7120027 ------------------------------------------------------------------------------Women who were higher on the pretest of depression are more likely to be classified as depressed during the follow up visits. Women in the estrogen group are significantly less likely to be classified as depressed. And, the log-odds of being classified as depressed go down over time regardless of which group the women were place in.
We at population averaged models using xtgee in a later unit.
Categorical Data Analysis Course
Phil Ender