intro material goes here
Trivariate Probit
A trivariate probit example using triprobit (findit triprobit). triprobit requires exactly three equations.
use http://www.gseis.ucla.edu/courses/data/hsb2, clear univar write math science -------------- Quantiles -------------- Variable n Mean S.D. Min .25 Mdn .75 Max ------------------------------------------------------------------------------- write 200 52.77 9.48 31.00 45.50 54.00 60.00 67.00 math 200 52.65 9.37 33.00 45.00 52.00 59.00 75.00 science 200 51.85 9.90 26.00 44.00 53.00 58.00 74.00 ------------------------------------------------------------------------------- generate hw=write>=60 generate hm=math>=59 generate hs=science>=58 probit hw female read Probit estimates Number of obs = 200 LR chi2(2) = 61.31 Prob > chi2 = 0.0000 Log likelihood = -84.990569 Pseudo R2 = 0.2651 ------------------------------------------------------------------------------ hw | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .6340312 .2300876 2.76 0.006 .1830678 1.084995 read | .0856048 .0130065 6.58 0.000 .0601126 .1110971 _cons | -5.672047 .7798022 -7.27 0.000 -7.200431 -4.143663 ------------------------------------------------------------------------------ probit hm female read Probit estimates Number of obs = 200 LR chi2(2) = 60.81 Prob > chi2 = 0.0000 Log likelihood = -83.147044 Pseudo R2 = 0.2678 ------------------------------------------------------------------------------ hm | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | -.0565293 .2219954 -0.25 0.799 -.4916323 .3785738 read | .0873693 .0129707 6.74 0.000 .0619471 .1127914 _cons | -5.426631 .7518587 -7.22 0.000 -6.900247 -3.953015 ------------------------------------------------------------------------------ probit hs female read Probit estimates Number of obs = 200 LR chi2(2) = 60.92 Prob > chi2 = 0.0000 Log likelihood = -97.070456 Pseudo R2 = 0.2389 ------------------------------------------------------------------------------ hs | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | -.446173 .2069653 -2.16 0.031 -.8518175 -.0405286 read | .0774906 .0115247 6.72 0.000 .0549027 .1000786 _cons | -4.351585 .6363017 -6.84 0.000 -5.598714 -3.104457 ------------------------------------------------------------------------------ triprobit (hw female read)(hm female read)(hs female read) trivariate probit, GHK simulator, 25 draws Number of obs = 200 Wald chi2(6) = 113.89 Log likelihood = -255.39444 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hw | female | .4822861 .2174348 2.22 0.027 .0561218 .9084504 read | .0850725 .0130431 6.52 0.000 .0595085 .1106364 _cons | -5.518831 .7613767 -7.25 0.000 -7.011102 -4.02656 -------------+---------------------------------------------------------------- hm | female | -.0372514 .2192788 -0.17 0.865 -.4670299 .3925271 read | .0885368 .0129185 6.85 0.000 .063217 .1138566 _cons | -5.523259 .7466543 -7.40 0.000 -6.986675 -4.059844 -------------+---------------------------------------------------------------- hs | female | -.4414487 .2081496 -2.12 0.034 -.8494145 -.0334829 read | .0780318 .0116111 6.72 0.000 .0552744 .1007891 _cons | -4.397324 .6381721 -6.89 0.000 -5.648119 -3.14653 -------------+---------------------------------------------------------------- athrho12 | _cons | .5599132 .1569287 3.57 0.000 .2523385 .8674879 -------------+---------------------------------------------------------------- athrho13 | _cons | .1135926 .1189038 0.96 0.339 -.1194545 .3466397 -------------+---------------------------------------------------------------- athrho23 | _cons | .2068782 .1287756 1.61 0.108 -.0455173 .4592737 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ rho12= .50791303 Std. Err.= .11644494 z= 4.36183 Pr>|z|= .0000129 rho13= .11310655 Std. Err.= .11738262 z= .96357152 Pr>|z|= .33526079 rho23= .20397651 Std. Err.= .12341769 z= 1.6527331 Pr>|z|= .09838519 ------------------------------------------------------------------------------ LR test of rho12=rho13=rho23=0: chi2(3) = 19.627249 Prob > chi2 = .00020277 test female ( 1) [hw]female = 0.0 ( 2) [hm]female = 0.0 ( 3) [hs]female = 0.0 chi2( 3) = 10.62 Prob > chi2 = 0.0140 test read ( 1) [hw]read = 0.0 ( 2) [hm]read = 0.0 ( 3) [hs]read = 0.0 chi2( 3) = 108.41 Prob > chi2 = 0.0000Multivariate Probit
This time we will analyze the same data using the -mvprobit- (findit mvprobit) program. mvprobit can analyze models with one or more binary response variables but there is no reason to usw it with less than three response variables since probit and biprobit can handle the other cases.
use http://www.gseis.ucla.edu/courses/data/hsb2, clear mvprobit (hw = read female)(hm = read female)(hs = read female), draw(15) Multivariate probit (SML, # draws = 15) Number of obs = 200 Wald chi2(6) = 109.56 Log likelihood = -254.16818 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hw | read | .0851814 .0129554 6.57 0.000 .0597893 .1105734 female | .6073341 .2282164 2.66 0.008 .1600382 1.05463 _cons | -5.63893 .7747692 -7.28 0.000 -7.15745 -4.120411 -------------+---------------------------------------------------------------- hm | read | .0895187 .0130687 6.85 0.000 .0639046 .1151328 female | -.0411219 .2204623 -0.19 0.852 -.4732202 .3909763 _cons | -5.573861 .7602042 -7.33 0.000 -7.063834 -4.083889 -------------+---------------------------------------------------------------- hs | read | .0779078 .0115966 6.72 0.000 .055179 .1006367 female | -.4385348 .2064562 -2.12 0.034 -.8431815 -.0338881 _cons | -4.378325 .6407917 -6.83 0.000 -5.634254 -3.122396 -------------+---------------------------------------------------------------- /atrho21 | .5840931 .1596715 3.66 0.000 .2711428 .8970434 -------------+---------------------------------------------------------------- /atrho31 | .1544151 .1388431 1.11 0.266 -.1177123 .4265426 -------------+---------------------------------------------------------------- /atrho32 | .3668846 .1474433 2.49 0.013 .0779011 .6558681 -------------+---------------------------------------------------------------- rho21 | .525634 .1155557 4.55 0.000 .2646879 .7148552 -------------+---------------------------------------------------------------- rho31 | .1531994 .1355844 1.13 0.259 -.1171717 .4024279 -------------+---------------------------------------------------------------- rho32 | .3512637 .1292508 2.72 0.007 .0777439 .5756071 ------------------------------------------------------------------------------ Likelihood ratio test of rho21 = rho31 = rho32 = 0: chi2(3) = 22.0798 Prob > chi2 = 0.0001 test female ( 1) [hw]female = 0 ( 2) [hm]female = 0 ( 3) [hs]female = 0 chi2( 3) = 12.94 Prob > chi2 = 0.0048 test read ( 1) [hw]read = 0 ( 2) [hm]read = 0 ( 3) [hs]read = 0 chi2( 3) = 103.32 Prob > chi2 = 0.0000
Categorical Data Analysis Course
Phil Ender